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A meus pais.

Eles não sabem que o sonho
É uma constante da vida
Tão concreta e definida
Como outra coisa qualquer
[...]

In Movimento Perpétuo, 1956



Abstract

This work focuses on the framework of spin-foam models and their
possible causal structure. In this context we propose a prescription
for identifying a spin-foam model as a quantum causal history. To
do so we first review the general construction of spin-foam models,
with particular emphasis on the EPRL model, and we study the
role of causal loops in quantum mechanical evolution. We further
argue that the EPRL-type models do not admit such a quantum
causal history description, as we show that the quantum operators
they induce fail to be unitary.
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Introduction

Quantum mechanics (in its quantum field theory guise) is widely regarded as the most well-
tested physical theory we currently possess. And general relativity, while not so extensively
tested, seems to be equally well-established as a fundamental theory of nature. In the
absence of strong experimental evidence of the failure of either of these theories at some high
energy regime, why do we find it pertinent to study the problem of a possible unification
of both quantum mechanics and gravity, specially when such a unification is theorized to
manifest itself mainly at the Plank scale lP ∼ 10−35m, so far away from the scope of our
instruments?

Although it is true that the quantum gravity program is not motivated by a wealth of
physical evidence (as once happened with the formulation of quantum mechanics, necessary
at the time due to the persistent insistence of experiments not to behave as expected), it
also happens that the world-views afforded by both conceptions of nature seem to be
unconciliatable: while general relativity tells the tale of a world with smooth structures
and fully deterministic systems, where time and space are dynamical physical objects like
any other, quantum mechanics describes a probabilistic one where time and space are but
parameters. Given this state of affairs it would seem that nature has forced our hand
in making progress; that in the absence of new experimental data, caused by our own
“excessively good” ability at constructing physical models, new progress must be made
through the hope that the world admits a conceptually consistent understanding. The
approach we take is then an optimistic one: that in the pursuit of a conceptual and
theoretical unification, new verifiable predictions might come up.

This work is therefore carried out in the context of the quantum gravity program. Our
framework of choice is the spin-foam approach, which is a manifestly non-perturbative pro-
posal for assigning amplitudes to quantum states associated with geometry. These models
can be derived from continuum classical theories, and they allow for a conceptualization
of spacetime as an arrangement of fundamental “atoms”, such that the quantum dynamics
of spacetime is encoded in each fundamental element. We are mainly interested in un-
derstanding if a notion of causality is implemented at the quantum level in such objects,
and we pursue a possible correspondence with the framework of quantum causal histo-
ries, another proposal for a quantum gravity framework that explicitly encodes a causal
structure.

The organization of this document is as follows. In Chapter 1 we review the theory
of general relativity and related models, focusing both on the formal aspects and on the
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conceptual ones. In particular we discuss the tetrad formulation of gravity, which proved
to be very useful in many quantum gravity theories, as well as the constrained topological
gravity model, used by most spin-foam formulations. In Chapter 2 we turn towards a
comprehensive overview of spin-foam models, discussing not only their structure but also
the physical and mathematical motivations behind them, focusing mainly on the famous
EPRL spin-foam. Chapter 3 is dedicated to a discussion on causality. We introduce the
framework of causal sets and quantum causal histories, and study a criterion on quantum
operators for linear evolution in the presence of causal loops proposed initially by Deutsch.
By defining an operator from which spin-foam amplitudes can be extracted, we establish
a prescription for identifying a spin-foam as a quantum causal history. We moreover show
such an operator to be non-unitary for a large class of models of the EPRL-type. Finally,
to accompany the physical discussion in this work, we have also included a number of
appendices containing some of the relevant mathematical tools.



Chapter 1

The Classical Theory of Space and Time

1.1 The emancipation of spacetime

This section is dedicated to a succinct discussion of the theory of general relativity in its
standard formulation, as a preparation for more advanced topics. We start with a brief
discussion of the physical principles of the theory and the framework on which it stands.
Some of the content of the theory, in particular its conceptual underpinnings and the
observables it suggests, is also reviewed.

1.1.1 Physical principles of the theory

General relativity frequently holds a special place in the family of physical theories that
we currently possess. This has much to do with how the theory was motivated and con-
structed ab-initio: not necessarily as a model designed ad-hoc to explain some unexpected
experimental results, but as a structured consequence of a set of principles we hold to be
true about the world. In this sense it incorporates in its content a long history of insights
on the inner-workings of nature, and still today it surprises us with its implications, not
always intuitive or expectable. As the very first step towards the discussion of a possible
quantum extension down the line, we start here by recalling the postulates of the theory.

General relativity hinges on a pair of basic principles, discussed prominently by Einstein
in [1]:

• General Principle of Relativity: the content of physical laws should not depend on the
reference frame used to describe them.

• Principle of Equivalence: an inertial reference frame subject to gravity is indistin-
guishable from an accelerated one.

The general principle of relativity, as a guiding postulate, is not exclusive to the theory
of general relativity. In fact it demands that physical theories, whatever they refer to,
must be formulated in such a way that their content, i.e. their predictive value, does not
depend on the particular reference frame one considers them in. To this end the theory of
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smooth bundles and their sections is most adequate, for it allows the description of objects
without necessary reference to a frame. Although those objects do admit a coordinate
description, there is no single preferred reference for those coordinates, and the object
can be described equivalently in any other frame. In this way the laws of physics become
coordinate-independent and truly universal. We expect a physical theory satisfying the
general principle of relativity to be then formulated as an action functional over some
smooth spacetime manifold M ,

S =

∫

M

L , (1.1)

for some chosen lagrangian density L. In this sense, any sensible physical theory must be
a theory of fields on a spacetime manifold, and such is the case for, as a strong example,
any modern quantum field theory.

For the particular case of general relativity, which concerns itself with the problem of
describing gravitation, it is the second principle of equivalence that allows one to determine
concretely the appropriate degrees of freedom of the theory. It follows from recognizing that
the inertial mass, associated to the fundamental law of acceleration F = ma, is perfectly
equivalent to the gravitational mass, as the “charge” of the gravitational force. Under
such an equivalence there is no empirical analysis that can discern between an accelerated
reference frame and an inertial one in the presence of a gravitational field (as Einstein’s
elevator is a famous example of). One may then try to establish gravitation as a theory
of non-inertial frames. From special relativity, Einstein had already argued that to each
inertial frame a Minkowski metric η should be associated, responsible for identifying those
transformations that would leave the frame inertial as the isometry group of the metric.
These are the usual Lorentz transformations Λ, such that, given an inertial frame F with
metric η, the frame transforms into another one through F → ΛF , η → ΛηΛT = η, and the
metric is left invariant. But one can consider other transformations that take an inertial
frame to a non-inertial one, F → TF , and such a transformation η → g 6= η would not
leave the Minkowski metric invariant. It is therefore natural to associate the character of
inertia of frames to a particular choice of a metric, in a way that to each non-inertial frame,
and to each metric, there corresponds only one possible transformation, up to a Lorentz
one, that takes it into a Minkowski form. Hence, the principle of equivalence suggests a
description of gravity in terms of a Lorentzian metric over spacetime, and we arrive at the
theory

L = L(g, φM) , (1.2)

where φM generically represents matter fields, and the concrete form of the lagrangian can
then be determined through further physical arguments, as was done by Einstein.

1.1.2 General relativity in a nutshell

The theory of general relativity is the theory of a 4-dimensional smooth Lorentzian manifold
(M, g), considered to be spacetime, equipped with the unique Levi-Civita connection ∇.
The manifold is endowed with an atlas A, and given some chart φ : U ⊂ M → R3,1 the



1.1 The emancipation of spacetime 5

connection acts on a local section X : U →M , with X = Xµ∂µ, as

∇µX
ν = ∂µX

ν + ΓνµαX
α , (1.3)

where Γνµα are the connection coefficients.
The metric g is taken to be the fundamental physical field of the theory, which is

described by the Einstein-Hilbert action (up to boundary terms)

SEH =

∫

M

d4x
√−g (R− 2Λ + 2κLM) , (1.4)

where R is the Ricci scalar of the connection, Λ the cosmological constant and LM the
matter lagrangian. Variation of the action with respect to the metric results in the Einstein
field equations [2],

Rµν −
1

2
gµνR = κTµν , (1.5)

where Rµν are the components of the Ricci curvature and Tµν = −2√−g
δ(
√−gLM )
δgµν

is the energy-
momentum tensor. Operationally, the equations (1.5) are always solved in coordinates, and
as such they only determine the metric on some open set U of the manifold. One then has
to use physical arguments to specify the concrete manifold M one is considering, and then
patch the solutions for the metric over an open covering {Ui} of the manifold.

Having determined a concrete Lorentzian metric on M , general relativity postulates
that systems propagate in spacetime along generalized “straight” paths, obtained by parallel
transporting a vector by the connection,

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 (1.6)

where τ parametrizes the curve γ : (0, 1) → M , and xµ = (φ ◦ γ)µ are the components of
the curve in the chart. Equivalently, one may write ∇γ̇ γ̇ = 0, where γ̇ denotes the tangent
vector field to the curve.

1.1.3 Measurements in spacetime

To understand the content of the theory of general relativity one needs to consider its
predictive power; the statements it is able to make about the world. The abstract formalism
described in the previous subsection is nothing more than a theoretical construction: the
symbols must now be matched to natural objects which can be measured.

In field theories over a Minkowski space-time the manifold under consideration is simply
R3,1, which admits a single chart to itself. One then has global coordinates available with
which to describe the degrees of freedom of the theory. A set of rods and clocks is associated
to these coordinates, in such a way that one can measure some initial conditions φ(x0, t0)
and solve the equations to find the system at some later time φ(x, t). As long as the points
(x0, t0) and (x, t) are measured with the same device, the predicted state of the system at
later times should match the experiment.
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The situation in general relativity is considerably more difficult (on this, see e.g. [3,
4, 5, 6] and references therein), because the abstract mathematical charts do not have
any intrinsic physical meaning. Consider a universe (M, g) and a curve γ : (0, 1) → M
parametrized by τ ∈ (0, 1). There exists a natural coordinate-independent quantity, the
proper length L of the curve,

Lγ =

∫

γ

dτ
√
g(γ̇, γ̇) , (1.7)

where γ̇ denotes the tangent vector field to γ. This quantity is a generalization of the
proper-time in special relativity, and it is most natural to consider it to be what an ideal
clock traveling through γ would measure: the “aging” of the system. It is important to
note that this quantity depends non-trivially on the dynamics of the metric, and already
here one understands why in general relativity one cannot take the charts of the atlas ofM
to correspond to physical reference frames: under a chart φ : U ⊂M → R3,1, the quantity
Lγ does not simply correspond to (φ ◦ γ(0))0− (φ ◦ γ(1))0; in general relativity, coordinate
charts do not correspond to laboratory frames, except in circumstantial approximations.
As Wigner puts it [3],

“[...] to some degree we mislead both our students and ourselves when we calculate [...]
the mercury perihelion motion without explaining how our coordinate system is fixed in
space [...].”

How then should lengths and time intervals be measured in general relativity? As
hinted at in the previous subsection, physical systems are described in general relativity
by curves and fields in M . To make measurements we certainly need a clock, so let us
populate our universe with a point-like system ξ : (0, 1)→M carrying a clock T : M → R.
The clock field associates to each point in M a number in R, like the numbers on a digital
stopwatch, and we may demand that it is an ideal clock by requiring that

T (ξ(τ2))− T (ξ(τ1)) =

∫ τ2

τ1

dτ

√
g(ξ̇, ξ̇) , (1.8)

for any τ1, τ2 ∈ (0, 1) (we shall not concern ourselves with how such a clock could be
constructed, but we assume it can. Even a pendulum clock at rest on the surface of the
earth is within a good approximation ideal, as discussed in [7]). Notice that while both T
and ξ can be described in a chart through T ◦ φ−1 and φ ◦ ξ, the quantity (T ◦ φ−1) ◦ (φ ◦
ξ) = T (ξ) is independent of any coordinates, and as such it contains meaningful physical
information: the time measured by a clock carried by the system.

To measure lengths, we can further add to our universe the world-line of a photon
γ : (0, 1) → M and some mirror, stationary relative to the clock. We can think of the
photon as being emitted by the system ξ, reflected on the mirror, and detected again by
the system. The curve described by the photon will then intersect the world-line of the
system in two points, and a distance can be computed by multiplying the time interval
measured by the clock as in equation (1.7) by the speed of light.
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Predictions in general relativity are then made by solving the pertinent equations in
some arbitrary chart, and then relating the quantities in a coordinate-independent manner.
In this way, for example, the Ricci curvature at some coordinates R(xµ) does not have any
physical content, neither does the representation of the curve ξµ(τ) in components, but
the quantity R(ξ(τ)), representing the scalar curvature at some proper time of the system
ξ, does. Of course, this means that in gravity the rods and clocks with which we make
empirical measurements are also dynamical, and must be incorporated in the theory itself,
and this makes general relativity a hard theory to work with.

1.1.4 Conceptual implications

Having established the structural skeleton of the theory of gravity, and discussed its found-
ing principles, a reflection on what the physical implications of such a theory is in order:
what is the theory telling us?

• Time and space as physical entities

As previously discussed, general relativity is formulated over a smooth Lorentzian
manifold (M, g). The inclusion of the metric in the description of spacetime im-
plies that distances and time intervals will not be simply coordinate differences, but
complicated functions of the metric as in equation (1.7). Since the metric is itself
dynamical, and dependent on the matter distribution, the operationally meaningful
notions of time and space, as measured by an observer, are also dynamical. In this
manner space and time are no longer constituents of a fixed background stage on
which everything else moves, but rather they are by themselves full-fledged phys-
ical entities with their own dynamics. Through general relativity, space and time
emancipate themselves from the Newtonian viewpoint of absolute structures.

• No background structure

From the previous point it follows that there is no fixed background on which matter
and energy exist. While in the special theory of relativity such a structure is present
in a global Minkowski metric, securing even the possibility of a globally-defined chart,
in general relativity there exists no such a priori structure. Since lengths and time in-
tervals are determined dynamically, rather than being associated to some fixed struc-
ture, even the base manifold on which the theory is formulated (usually considered to
be space-time itself) can be argued to be more of a parametrization mechanism than
actually space-time. Moreover, the equations of motion of general relativity refer
exclusively to the metric field and the energy-momentum tensor in local coordinates,
making no principle statement on what the manifold should even be: it simply needs
to be able to accommodate the metric that the equations determine. As remarked
by Einstein in [1],

“[...] the requirement of general covariance takes away from space and time the last
remnant of physical objectivity [...].”
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In the literature this property of the theory has frequently been described as dif-
feomorphism-invariance, together with the claim that general relativity is the only
theory to possess such an attribute. Here we would like to argue in the direction
of describing this property as a consequence of general covariance, or the general
principle of relativity, together with the absence of an a priori structure. In fact any
theory that respects this principle must be formulated as an action over a smooth
manifold

S =

∫

M

L(φ) =

∫

Φ(M)

Φ∗L(φ) , (1.9)

and the integral that describes it is invariant under a diffeomorphism Φ : M → N of
the manifold when the 4-form integrand is appropriately pulled-back. The equations
of the theory are left completely unchanged, and this is not exclusive to general
relativity. The special character of the theory of gravity lies rather in the absence of
a background structure, which every other field theory has in the form of a Minkowski
metric over an R3,1 manifold.

• Relational observables

Finally, it follows from the discussion of the previous subsection that the observables
of the theory must be relational, in the sense that they must be obtained through the
description of some field in terms of another, rather than in terms of arbitrary coor-
dinates without physical meaning. Again we recover the notion that the “spacetime”
manifold lacks any true physical identity. As Rovelli humorously describes [8],

“No more fields on spacetime, just fields on fields. [...] we have to ride the whale.”

1.2 Tetradic gravity

After a short review of the standard approach to general relativity, we now turn to a
less known construction. There exist many alternative but equivalent formulations of the
theory of gravity, all of them resting on different formal structures. Such an equivalence, we
argue, is however not merely formal, for the choice of the pertinent mathematical objects
one uses to describe the world carries with it an assignment of ontological importance to
those objects. Moreover, in the realm of quantum physics, it is well-known that equivalent
classical theories may give rise to inequivalent quantum ones. Considering a reformulation
of the usual theory of spacetime, synthetically described by the Einstein-Hilbert action,
is therefore most definitely not a wasted effort, and we will in fact argue for both the
formal and conceptual usefulness of such a reformulation. In this section we will consider a
first-order version of the Einstein-Hilbert lagrangian, and relax furthermore the standard
assumption that one must use the Levi-Civita connection to describe gravity. The theory
satisfying these two properties is usually called in the literature the first-order Palatini
formulation, after the physicist [9] that first proposed considering the connection a bona
fide physical field of the system, and it will turn out to be a gauge theory.
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1.2.1 Frames of spacetime

To show how the usual description of the theory can be reconstructed into a first-order one,
we start with the usual setting of General Relativity: a smooth 4-dimensional orientable
Lorentzian manifold (M, g) and the unique Levi-Civita connection on the tangent bundle
∇LC that one may use to transport vectors over the manifold. Now, the most standard
way to describe the vectors of TM in a neighborhood of a point is through the canonical
basis {∂µ} coming from a chart in that neighborhood, but this choice of basis, or frame
of reference, may be too general for physical purposes. Indeed, in physics one is generally
interested in considering inertial frames, because it is in these frames that physical laws
seem to present themselves in the most simple way. Whether a frame is to be considered
inertial or not depends of course on the metric that is associated to it, and we can take an
inertial frame to be one where the metric looks like the Minkowski one.

Let us then consider at an open set U ⊂ M an inertial frame, that is, a family of
four local linearly-independent sections {eI}I=0,..,3 , eI ∈ Γ(TU) satisfying an orthogonality
condition with respect to the Minkowski metric η:

g(eI , eJ) = ηIJ . (1.10)

Such a choice of local sections can always be made [10], and we follow the common con-
vention of calling the vector eI either a tetrad or a frame field. Note that one can think of
the frames as maps from the canonical basis ê of R3,1,

e : M × R3,1 → TM

(x, êI) 7→ (x, e µ
I ∂µ) ,

(1.11)

and we denote eI = e(êI). Dual to the basis vectors of the frame there exist one-forms
{θI}, which we shall call cotetrads, or coframe fields, such that the metric can then be
straightforwardly rewritten as

g = ηIJθ
I ⊗ θJ , (1.12)

and in this sense one may think of the coframe as a sort of square-root of the metric. The
inner product of vectors with components X = XIeI , Y = Y JeJ relative to the frame is
then simply 〈X, Y 〉 = ηIJX

IY J , and as such we may think of the "internal" roman indices
as Minkowski indices, and they can be raised and lowered with the Minkowski metric as
usual. Moreover, given the canonical basis at the open set U , we may express the tetrads
as eI = e µ

I ∂µ and the cotetrads as θI = eIµ dxµ, such that from the orthogonality condition
of equation (1.10) and the duality requirement θI(eJ) = δIJ , we find the equations

eIµe
µ
J = δIJ

eIµe
ν
I = δµν ,

(1.13)

and the metric g on the manifold can be used to raise and lower "spacetime" greek indices.
Note that the components e µ

I have an important meaning: they are the functions that
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transform a generic frame into an inertial one, and this transformation is unique up to the
Lorentz transformations Λ ∈ SO(3, 1) that relate different inertial frames, defined by

ηIJ = ΛA
IΛ

B
JηAB . (1.14)

We can therefore always transform an inertial frame eI to an equivalent one by the action
of an SO(3, 1) matrix, and the resulting frame will still be orthogonal with respect to g.

What we have just described constitutes the conceptual gist of the tetrad framework,
but there exists a very elegant way to mathematically systematize the objects we dis-
cussed. It turns out in fact [11] that the Lorentzian manifold (M, g) naturally gives rise to
bundle of orthonormal frames ⊥Fr(TM), which may also be seen as a principal G-bundle
P (SO(3, 1),M) (a bundle of coframes of T ∗M can also be constructed in complete anal-
ogy). A local section of P will then be a local frame e : M × R3,1 → TM , satisfying
the orthogonality relation g(eI , eJ) = ηIJ , and possibly being subject to a transformation
through the right action of the Lorentz group eI 7→ eIΛ

I
J . The appearance of a principal

bundle suggests that we are in the presence of what can be seen as a gauge theory, albeit
one that is unequivocally connected with the tangent bundle of M , in a way that a princi-
pal connection 1-form ω ∈ Ω(P, so(3, 1)) of P naturally induces a connection on TM , and
vice-versa. The gauge symmetry of the theory is precisely the one we already identified
earlier with the transformation of a local frame by a Lorentz matrix. The interested reader
in the mathematical description of how these structures arise is directed to Appendix A,
where a brief review of frame and principal bundles, and their connections, is presented.

1.2.2 The first-order lagrangian

Taking into account the points of the previous subsection, the framework in which we
presently want to position ourselves is the following: starting with a 4-dimensional ori-
entable smooth manifold M , we consider a G = SO(3, 1) gauge theory formulated on the
associated bundle E := P ×ρ R3,1 to the principal bundle P (G,M)

π→ M , with ρ as the
fundamental representation of the Lorentz group.

Given a choice of trivializing maps φi : π−1(Ui) → Ui × G over an open covering
{Ui} of M , we may define a set of canonical local sections σiI(x) = [φ−1

i (x, e), êI ], where
e is the identity element of G and êI is the canonical basis in R3,1. A connection 1-form
ω ∈ Ω(P, so(3, 1)), with values in the Lie-algebra of the Lorentz group, can be pulled back
to a form in some Ui ⊂ M through Ai = φ−1

i (x, e)∗ω, and in turn this matrix of forms
specifies a connection in E (c.f. (A.20)) by acting on the sections as1

∇σI = σJ ⊗ ρ∗(A)JI . (1.15)

The connection on E also determines a local curvature, written neatly with the exterior
covariant derivative (A.21) as F = DA = dA+ A ∧ A.

1We will omit both the symbol ρ and the set index i for convenience.
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Now we intend to transport the above information to the tangent bundle of the base
manifold. Since both E and TM are vector bundles of the same dimension, there exists
an isomorphism

e : E → TM

σI 7→ eI = e µ
I ∂µ ,

(1.16)

and we name tetrads the images eI of the map. Both the differential operators ∇ and D
can be made to act on TM through the isomorphism, so they act locally in an entirely
analogous way as in E. Furthermore, we consider also the dual isomorphism acting on
sections ςI of the dual bundle E∗,

θ : E∗ → TM

ςI 7→ θI = eIµ dxµ ,
(1.17)

and to the images θI we will call cotetrads. It is precisely in these isomorphisms that the
degrees of freedom of the theory will lie: they determine in which manner the canonical
sections of E induce frames in TM , and from this information a metric field may be
constructed. Indeed, on each open set where the tetrads (more precisely, the σI) are
defined2, let the metric g be given by

g = ηIJθ
I ⊗ θJ , (1.18)

where η is the standard Minkowski metric in R3,1.
As an important step in making contact with the standard formulation of GR, we now

show that the connection induced by ω turns out to be metric compatible. Consider two
local sections s = sIeI , t = tJeJ of TM . We then have dg(s, t) = d(sItJ)ηIJ , and

g(∇s, t) + g(s,∇t) = g(dsKeK + eKA
K
Is
I , tJeJ) + g(sIeI , dt

KeK + eKA
K
Jt
J)

= (dsKtJ + AKIs
ItJ)ηKJ + (sI dtK + sIAKJt

J)ηIK

= dsItI + AJIs
ItJ + sI dtI + AIJs

ItJ

= d(sItJ)ηIJ ,

where we used AIJ = −AJI , as so(3, 1) can be identified with skew-symmetric matrices.
We find that the condition for metric compatibility dg(s, t) = g(∇s, t) + g(s,∇t) holds.

So far, starting from a connection on an associated bundle and a choice of an isomor-
phism to the tangent bundle of the base, we have recovered a Lorentzian manifold (M, g)
together with a metric compatible connection ∇. However, in order for the connection to
be a Levi-Civita one, as it is usually considered to be, the connection must also have a
vanishing torsion form. It turns out, as will be discusses below, that this condition can
be made to arise naturally. To see how this is possible, we shall first rewrite the usual

2Of course, g is so-far only defined locally. However, we assume that a global metric exists, and
operationally such a global metric is determined in much the same way one would in the standard Einstein-
Hilber theory: by solving the equations for g at different open sets and then matching the solutions.
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Einstein-Hilbert lagrangian (1.4) in terms of tetrads. Relating the curvature form F with
the Ricci scalar through equation (A.34), and making use of the Hodge star as defined in
(A.36), the curvature term can be recast in the form

d4x
√
− det g R = δαβ[µν] · d4x

√
− det g e µ

I e
ν
J F

IJ
αβ

=
1

2
εµνρσε

αβρσ d4x
√
− det g e µ

I e
ν
J F

IJ
αβ

= dxα ∧ dxβ ∧
(√− det g

2
εµνρσ dxρ ∧ dxσ

)
eIµeJνF

IJ
αβ

= F IJ ∧ ?(dxµ ∧ dxν)eIµeJν

= F IJ ∧ ?(θI ∧ θJ) ,

and the cosmological term becomes

Λ
√
− det g d4x = Λ det θ

1

4!
εµνρσdxµ ∧ dxν ∧ dxρ ∧ dxσ

=
Λ

4!
εIJKLδ

α
[µδ

β
ν δ

γ
ρδ

δ
σ]e

I
αe

J
βe

K
γe
L
δdx

µ ∧ dxν ∧ dxρ ∧ dxσ

=
Λ

4!
εIJKL e

I
αe

J
βe

K
γe
L
δ dxα ∧ dxβ ∧ dxγ ∧ dxδ

=
Λ

4!
εIJKL θ

I ∧ θJ ∧ θK ∧ θL

=
Λ

12
θI ∧ θJ ∧ ?(θI ∧ θJ) .

The reformulated action for gravity, which we will call the tetrad action, is then

ST =

∫

M

F IJ ∧ ?(θI ∧ θJ)− Λ

6
θI ∧ θJ ∧ ?(θI ∧ θJ) . (1.19)

An important point to note is that, as it stands, the natural field to take as the object of
the theory, with respect to which one varies the action, is the tetrad θI = eIµ dxµ. The
equations of motion for the system will then be written in terms of this field, and since the
metric is, in a generalized sense, the square of the frames, the equations represent a sort
of first-order reconstruction of the usual Einstein field equations. The physical content of
the theory is therefore in how the tetrads in TM relate to the canonical sections of that
bundle, and this relation directly represents the equivalence principle, one of the tenets of
General Relativity, as we will later argue.

It remains to check whether the equations of motion that arise out of such an action
are indeed the ones demanded by the theory of general relativity. This is the subject of
the next subsection.

1.2.3 Equations of motion

As is well known, in General Relativity one is concerned only with the metric as the
sole physical field of the theory. The task of transporting vectors along the manifold is
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relegated to the natural choice of the Levi-Civita connection as the unique connection
on the tangent bundle that is both metric-compatible and torsion-free. Since the metric
we have constructed is such that the connection induced by the gauge bundle is metric-
compatible, one might ask whether it is possible to also make the vanishing of the torsion
to somehow arise naturally from the theory. The answer, unsurprisingly, is that this can be
done. Following Palatini, we demand of the connection AIJ to be itself a degree of freedom
of the theory.

The equations of motion can be obtained from the action principle. In what follows
we use that the exterior covariant derivative acting on scalar-valued forms in Γ(T ∗M ⊗R)
reduces to the exterior derivative. The variation with respect to the connection yields

δ

δA
→
∫

M

δF IJ ∧ ?(θI ∧ θJ)

=
1

2
εIJAB

∫

M

DδAIJ ∧ (θA ∧ θB)

=
1

2

∫

M

D
[
δAIJ ∧ θA ∧ θB εIJAB

]
+ 2εIJAB δA

IJ ∧DθA ∧ θB

=
1

2
εIJAB

∫

M

d
[
δAIJ ∧ θA ∧ θB

]
+ 2δAIJ ∧ TA ∧ θB

= εIJAB

∫

M

δAIJ ∧ TA ∧ θB

⇒ TA = 0 , (1.20)

where we have used the definition of the torsion form from equation (A.35). This is exactly
what we expected to find: the connection of the theory turns out to be the Levi-Civita
connection, without it having to be an ad-hoc assumption. On the other hand, the variation
with respect to the frames results in

δ

δθ
→
∫

M

F IJ ∧ ?(δθI ∧ θJ · 2)− Λ

6
δθI ∧ θJ ∧ ?(θI ∧ θJ) · 4

=

∫

M

2δθI ∧
[
θJ ∧ ?F IJ − Λ

3
θJ ∧ ?(θI ∧ θJ)

]

⇒ εIJAB

[
F IJ − Λ

3
θI ∧ θJ

]
= 0 , (1.21)

which can easily be seen, as per equation (A.34), to simply be the Einstein field equations
with a cosmological constant. We have therefore successful reformulated General Relativity,
and its equations, in terms of a Lorentz gauge theory.
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1.2.4 The meaning of the tetrads

Figure 1.1: A spacetime with finite regions of matter generating gravitacional fields, and
hence described by non-inertial frames F . The set of transformations that take each frame
to a non-inertial one can serve as a description of the gravitational field.

While the lagrangian in equation (1.19) seems different enough from the Einstein-Hilbert
action, being constructed with different degrees of freedom, we may argue that it represents
a more direct application of the physical principles described in subsection 1.1.1. Recalling
the discussion there, the theory of general relativity is in essence a theory of reference
frames. In the absence of matter, and more concretely in the absence of a gravitational
field, one can imagine setting up a set of inertial frames over finite regions of spacetime (for
example, by using clocks and rods such that Newton’s law holds). Consider one of those
frames over a region U , denoted by FU . As soon as matter is considered in this region,
FU becomes indistinguishable from a non-inertial frame. We can, however, return to it its
inertial character by operating a transformation: we take FU → F ′U such that F ′U is again
an inertial frame. Note that this transformation is unique up to SO(3, 1) transformations;
ΛF ′U is of course still inertial. In the general presence of matter, we can now describe the
whole system by assigning an inertial frame to every region. However, we would like to
describe the dynamics of matter with more precision; in fact we want to describe matter’s
position to the point, and this requires an assignment of a frame at every such point.

In this way, we may think of gravity as a theory which assigns an inertial frame at every
point - these are our tetrad fields θI , defined earlier, which are indeed inertial because they
satisfy the condition

g(θI , θJ) = ηIJ . (1.22)
The fact that given a non-inertial frame there is not a unique choice of a corresponding
inertial frame is encoded in the gauge symmetry of the theory - the theory is essentially a
gauge theory coupled to frame fields.

1.3 Other first-order formulations

We consider further possible actions for general relativity, in particular the Holst action
and the constrained BF action. Both of these theories have proved very useful in several
approaches to quantum gravity.
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1.3.1 The Holst term

It is well-known that physical theories that are equivalent on-shell may give rise to in-
equivalent quantum versions of themselves, essentially because the path integral approach
to quantum mechanics explicitly attributes a non-zero weight to trajectories of the system
that do not extremize the action. In this subsection we consider an additional term one
can add to the tetrad action, usually called the Holst term [12], which vanishes under the
imposition of the equations of motion, corresponding therefore to a theory which is clas-
sically equivalent to Einstein’s model, but not necessarily so at the quantum level. The
resulting action, which we will call the Holst action, is given by

SH =

∫

M

F IJ ∧
(
?+

1

γ

)
(θI ∧ θJ)− Λ

6
θI ∧ θJ ∧ ?(θI ∧ θJ) , (1.23)

where γ ∈ C\{0} is a yet to be fixed parameter, usually called the Immirzi parameter (this
parameter corresponds to the one that appears in the canonical formulation of quantum
gravity [13]). When γ is taken to be arbitrarily large, the frame action is recovered.
Although this term is usually called a boundary term, it is important to note that it
cannot be written as a total derivative, so its impotence really follows from the equations
of motion. In a manner entirely similar to what was done for equation (1.20), we again
find

T I = 0 . (1.24)
Substituting back in the lagrangian, the connection AIJ is now completely determined by
the vanishing of the torsion to be the Levi-Civita connection AIJ [θ], so it is a fixed degree
of freedom dependent on the tetrad. The Holst term then vanishes, since

F IJ [θ] ∧ θI ∧ θJ = F [θ]IJµνθIαθJβ dxµ ∧ dxν ∧ dxα ∧ dxβ

= R[θ]µναβε
µναβ d4x

= 0

where in the last line the Bianchi identity Rµ
[ναβ] = ∇[νT

µ
αβ] +T µγ[ν T

γ
αβ] , which holds for

any connection, was used. Still from this identity one understands the Achilles heel of the
Holst action: it is only equivalent to the frame theory when the torsion vanishes, and when
one considers matter fields the torsion field will not, in general, be zero. It is not only
that the Holst theory may induce an inequivalent quantum theory to the Einstein-Hilbert
one, but rather that in the presence of matter both theories are, even at the classical level,
intrinsically different. Whether this circumstance is enough to deter one from using this
action in an approach to quantum gravity is in the eye of the beholder. On the topic of
the physical effects of a non-vanishing torsion many articles exist in the literature, and the
interested reader is directed, for example, to Perez’s enlightening work [14].

1.3.2 Constrained topological gravity

Yet another incarnation of general relativity, which has found considerable success in the
descriptions of quantum gravity that will be discussed here, is the BF theory of gravity with
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constraints [15], so named because the theory is background-free in the sense that the action
does not depend on a metric on the manifold (notice the absence of a Hodge star in (1.25)).
The theory is formulated over a 4-dimensional spacetime M as the base manifold of the
associated bundle E = SO(3, 1)×ρR3,1, just as before, with the isomorphism e : E → TM .
The relevant fields are a local connection 1-form A in M with values in so(3, 1), inducing a
curvature form F (A), and a 2-form B in M also with values in the algebra. Additionally,
there is a matrix scalar field φIJKL = φKLIJ that will serve as a Lagrange multiplier, which
we define to be traceless, εIJKLφIJKL = 0. The action takes the form

ScBF =

∫

M

BIJ ∧ F IJ − Λ

12
εIJKLB

IJ ∧BKL + φIJKLB
IJ ∧BKL , (1.25)

and Λ serves the purpose of a cosmological constant. The equations of motion for B and
F directly yield

δ

δA
→ DBIJ = dBIJ + [A,B]IJ = 0 (1.26)

δ

δB
→ FIJ =

Λ

12
εIJKLB

KL − φIJKLBKL . (1.27)

Varying the action with respect to the Lagrange multiplier one finds

δ

δφ
→ BIJ ∧BKL = εIJKL V , (1.28)

for some V ∈ Λ4T ∗M . In the literature this set of equations is known as the simplicity
constraints, since one can show that they constraint the form BIJ to be simple, i.e. to be
a wedge of one-forms (also called a bi-vector). That this is true was shown once and for all
by Reisenberger in [16] using somewhat abstract geometrical arguments. Here, however,
we present an easier algebraic proof of the result.

Proposition: The equation BIJ ∧ BKL = εIJKL V with non-vanishing V holds if and
only if BIJ = ±θI ∧ θJ or BIJ = ±1

2
εIJKLθ

K ∧ θL.
Proof: It is easy to check that the equations for BIJ satisfy the simplicity constraints.

Regarding the other direction, it follows from the constraints that BIJ ∧ BKJ = 0. Now
choose some local section v = vJeJ of TM such that BIJ(v) 6= 0. Then (BIJ ∧BKJ)(v) =
2BIJ(v) ∧ BKJ = 0 ⇒ BKJ =

∑
I α

KI ∧ 2BIJ(v), for some matrix of 1-forms αKI . This
can be rewritten as BIJ = αI ∧ βJ , with αI and βJ two frames of TM .

Now we show colinearity. Since B takes values in so(3, 1), we have BIJ = −BJI . In
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terms of the one-forms,

αI ∧ βJ = −αJ ∧ βI

⇔ (αIµβ
J
ν + αJµβ

I
ν ) dxµ ∧ dxν = 0

⇔ αI[µβ
J
ν] + αJ[µβ

I
ν] = 0

⇒ αI[µβ
I
ν] = 0 , ∀I

⇔
∣∣∣∣
αIµ αIν
βIµ βIν

∣∣∣∣ = 0

⇔ ∃k ∈ R s.t. αIµ = kβIµ , ∀µ

Upon a suitable normalization we get BIJ = ±θI ∧ θJ , as we intended. The other sector
of solutions can also easily be found by noting that the simplicity constraint equation is
invariant under BIJ → 1√

4!
εIJKLB

KL, so the above argument can again be used. �
Constraining the B field to be simple, and defining a local metric over M as in (1.12),

we find the actions

S ′cBF =

∫

M

F IJ ∧ θI ∧ θJ ±
Λ

6
θI ∧ θJ ∧ ?(θI ∧ θJ) (1.29)

S ′
?
cBF =

∫

M

F IJ ∧ ?(θI ∧ θJ)± Λ

6
θI ∧ θJ ∧ ?(θI ∧ θJ) , (1.30)

for BIJ = ±θI ∧ θJ and BIJ = ± ? (θI ∧ θJ), respectively. The action corresponding to the
? sector turns out to be the tetrad action (1.19) up to a possible relative minus sign of the
cosmological constant. Notice furthermore that if one chooses to sum the two actions with
a relative 1/γ factor, corresponding to the two different sectors, the Holst action (1.23) is
recovered.



Chapter 2

Towards a Quantum Theory of Gravity

The problem of theoretically unifying in a single physical model the theory of quantum
mechanics and general relativity is evidently a difficult one, as one would conclude from
the fact that it has remained unsolved for nearly a century now. While quantum theories
of every other fundamental interaction have been successfully achieved in the framework of
quantum field theory, all described in a common language and displaying common features,
every attempt (up to now) to force the theory of gravity into that framework has been
met with a certain inherent resistance from the theory itself. That internal resistance is
most prominently represented by the seemingly unresolvable divergences that appear in
perturbative metric computations around a specified background; the linearized Einstein-
Hilbert quantum field theory is indeed famously non-renormalizable1.

Does the difficulty in adapting general relativity to the extremely successful QFT frame-
work hint at a idiosyncratic nature of gravity? We would argue it is so. Our discussion
in Chapter 1 on the classical theory of general relativity intends to point out the many
structural peculiarities of the world-view afforded by GR. Out of those, it is perhaps the
characteristic of absence of a-priori structures in the theory, and the subsequent immate-
riality of a strong notion of time, that most conflicts with a perturbative QFT description,
initially developed in the context of a Minkowski space-time. Going further still, if one
thinks of gravity not as an interaction (as electromagnetism and the strong and week forces
are) but rather as a consequential phenomenon of the geometrical properties of space-time,
there is no reason to strongly argue that general relativity should admit a naive quantum
field theory description as the other forces do; a different path would then be needed,
implementing the lessons of subsection 1.1.4.

In this chapter we discuss in concrete physical terms a possible quantum model for
gravity, with the chosen approach being the spin-foam one. The following is intended as a
pedagogical review of both the general framework and a couple of specific models.

1The program of asymptotic safety, which has been showing considerable promise, aims precisely to
find a renormalizable modification to the standard theory by studying its RG flow and demanding a finite
coupling at asymptotic distances.
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Figure 2.1: An oriented 3-valent graph and its embedding in a donut (also known as glazing
a donut).

2.1 The quantum states of gravity

As we have just argued, a naive construction of the quantum states of gravity through the
perturbative QFT prescription might not be the best option. To precede the exposition
on spin-foam models, we now review a certain characterization of gauge theory states that
seem adequate to the problem at hand: the so called spin-network states.

2.1.1 Gauge theory on a graph

We argued in the first chapter that the theory of general relativity can be recast as a
gauge theory on the group of Lorentz transformations. In this section, following [17], we
give the first steps towards a description of the Hilbert space L2(Aφ/Gφ) of a discretized
gauge theory, given by the square-integrable, gauge-invariant functions on the space of
connections over a graph.

Consider a principal G-bundle P
π→ M of a compact Lie group. We can define

an embedded graph in M using an equivalence relation on embedded curves; we define
γ1 ∼ γ2 if γ2 can be obtained from γ1 through an orientation-preserving homeomorphic
reparametrization, and call the equivalence class e = [γ] an edge inM . An embedded graph
φ is then a collection of such edges such that they intersect only at their endpoints. We
denote Eφ and Vφ the sets of edges and vertices of φ, respectively. To the vertex at the end
of an oriented edge we call the target t(e) of the edge, and analogously s(e) for the source.
Figure 2.1 is a pictorial representation of an embedded graph.

To construct a gauge theory over the graph φ, we restrict the principal bundle to Vφ,
seen as the base space with the subset topology (which ends up being the discrete one).
The resulting bundle is of course trivializable, and we have Pφ ' Vφ×G. By a well-known
result from the theory of principal bundles, the connection on the bundle can be uniquely
determined from all the parallel transports on the manifold. We adopt this view-point and
consider the space of connections over the graph to be given by

Aφ =
∏

e

Ae ' G|Eφ| , (2.1)

where Ae is the space of edge bundle isomorphisms Ae : Pe(0) → Pe(1) that are G-compatible
Ae(xg) = Ae(x)g, i.e. the space of parallel transports along the edge e. In turn, since
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gauge transformations act on parallel transports at their endpoints as in equation (A.17),
we expect the gauge group G to act on the vertices. As discussed in subsection A.1.4, one
has the identification Gφ '

∏
v∈Vφ Pv×conjG and an action Gφ .A : (gA)e = g−1

e(1)Aege(0), so
that in fact we may take

Gφ ' G|Vφ| . (2.2)

Now we want to describe the space H = L2(Aφ/Gφ). Let Λ denote the set of all unitary
irreducible representations of G, including the trivial one. Given the Hilbert space L2(G)
at each edge, the gauge transformations

G×G . G

(g1, g2) 7→ g−1
2 gg1

(2.3)

induce2 a unitary representation of G on L2(G) through U(g1, g2)f(g) = f(g−1
2 gg1). We

implement in this way the action of the gauge group in the space of functions of the
connection. Using the Peter-Weyl theorem, discussed in subsection B.2.1, this space can
then be decomposed into the sum of unitary representations of G with the isomorphism

L2(Aφ) '
⊗

e∈Eφ

⊕

λ∈Λ

Hλ ⊗H∗λ , (2.4)

and the gauge group acts on this space as
⊗

e∈Eφ

⊕

λ∈Λ

ρλ(gs(e))⊗ ρ∗λ(gt(e)) . (2.5)

To proceed we may now use an interesting trick from Baez in [17]. Since for the product
in the previous equation the associative property holds, we may equivalently write

L2(Aφ) '
⊕

Λ→Eφ

⊗

e∈Eφ
He ⊗H∗e , (2.6)

where the notation Λ→ Eφ is meant to indicate a coloring of each edge of the graph φ by a
unitary irreducible representation indexed by λ ∈ Λ. This decomposition can furthermore
be factorized in terms of vertices: denote Sv ∈ Eφ the set of all edges whose source is v, and
analogously the set Tv ∈ Eφ of edges whose target is v; then we may write the isomorphism

L2(Aφ) '
⊕

Λ→Eφ

⊗

v∈Vφ

(⊗

e∈Sv
He

⊗

e∈Tv
H∗e

)
. (2.7)

With regards to the full Hilbert space H = L2(Aφ/Gφ), notice that L2(Aφ/Gφ) '
Inv (L2(Aφ)), where Inv (L2(Aφ)) denotes the invariant subspace under Gφ. In Section
B.3 we show that we can characterize the space of invariants Invθ(

⊗
e∈Sv He

⊗
e∈Tv H∗e) '

2Unitarity follows from the fact that the Haar measure is bi-invariant on compact groups.
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Int(
⊗

e∈Sv He,
⊗

e∈Tv H∗e) in terms of intertwiners. Hence we may finally decompose the
space of our theory as

L2(Aφ/Gφ) '
⊕

Λ→Eφ

⊗

v∈Vφ
Int

(⊗

e∈Sv
He,

⊗

e∈Tv
He

)
(2.8)

and a basis for this space can be written through a basis ιv for the intertwiners as

L2(Aφ/Gφ) ' span
{⊕

Λ→Eφ

⊗

v∈Vφ
ιv
}
. (2.9)

States in this space are called spin-network states. A general state will then have the form

|ψ〉 =
⊕

Λ→Eφ

⊗

v∈Vφ
(cv)

i1...im
j1...jn

(ιv)
j1...jn
i1...im

(2.10)

where we use the matrix elements of the intertwiners and cv encodes the components.
There is a natural way to construct explicitly a function of the connection from these

states. Notice that the intertwiners are maps

ιv : Hv
in → Hv

out , (2.11)

and that the same Hilbert space associated to an edge will be an incoming space as many
times as it will be an outgoing one. To construct an element in C, we may then simply
compose all the intertwiners in the graph. The dependence of this number on a connection
can be made, before the composition of the intertwiners, by acting on each intertwiner
with a representation of some group element from the left and from the right. The group
element should be determined by the connection, so we choose to assign it through the
parallel transport of the connection along the edge. Formally, the spin-network wave-
function for a basis state can be written as

ψ(A) =
(
ρv1out(H

eout
v1
A ) ◦ ιv1 ◦ ρv1in (H

einv1
A )
)
◦ ... ◦

(
ρvnout(H

eout
vn
A ) ◦ ιvn ◦ ρvnin (H

einvn
A )

)
, (2.12)

where ρvin/out denotes the tensor product of incoming/outgoing representations at the vertex

v, ιv denotes the intertwiner at v and He
in/out
v
A stands for all the holonomies along the in-

coming/outgoing edges e at the vertex. They are given as always by He
A = P exp{−

∫
e
A}.

In terms of indices, the wave function is found by assigning upper (for incoming represen-
tations) or lower (for outgoing) indices to the intertwiners, and then contracting them with
the matrices associated with the holonomies.

As a closing remark, we would like to point out that spin-networks were essential in
the development of loop quantum gravity [8]. Although they were only developed here
in the context of a graph over a manifold, one of the substantial steps of loop quantum
gravity was defining, in a rigorous manner, the space of gauge-invariant functions of the
connection over the full manifold, rather than merely over an embedded graph. On this,
see e.g. [18, 19, 20] and references therein.
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Figure 2.2: A basis spin network state labeled by a choice of representations on each
edge and intertwiners at each vertex. The wave function associated to the state is found
by contracting the indices according to the combinatorics of the diagram. We use the
simplified notation ρi = ρi(H

i
A).

2.1.2 Geometric observables

Having identified the Hilbert spaces we are interested in, observables in these spaces must
now be introduced. In order to make a more concrete argument, we choose the specific
Hilbert space

H =
⊕

j0,j1,j2,j3

InvSU(2) (j0 ⊗ j1 ⊗ j2 ⊗ j3) , (2.13)

corresponding, for G = SU(2), with one of the tensor factors in equation (2.8) specified
to four outgoing edges. The ji denote unitary irreducible representations. In doing so we
follow [21, 22].

Denoting by J i the generators of SU(2), satisfying the Lie bracket relation [J i, Jk] =
iεiklJ

l, the group representation with which H is constructed induces a representation of
the algebra through the exponential map, well-known from quantum mechanics. We now
define the operators3

Bi
0 = J i ⊗ 1⊗ 1⊗ 1

Bi
1 = 1⊗ J i ⊗ 1⊗ 1

Bi
2 = 1⊗ 1⊗ J i ⊗ 1

Bi
3 = 1⊗ 1⊗ 1⊗ J i .

(2.14)

Since we are interested in quantum gravity observables we would like to construct operators
associated to geometrical quantities, and to do so we must interpret the Bi

µ geometrically.
Note that, because the Bi

µ generate the action of SU(2) on T =
⊗

i ji, we have the

3We denote these operators by the letter B because these will precisely be the operators associated to
the B field of the BF action later on. The fact that they represent faces should not be surprising, as in
that theory the B field is a two dimensional object, which under the simplicity constraints is determined
by the product of two edge vectors.
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equivalent characterization of H as

H '
{
|ψ〉 ∈ T

∣∣∣∣
∑

µ

Bµ |ψ〉 = 0

}
, (2.15)

so we are led to think of the Bi
µ as imposing some kind of geometrical closure condition on

the states. The most immediate choice of a geometrical object in three dimensions that
satisfies such a constraint is the tetrahedron, with Bµ interpreted as the normal vector to
the µth face. If this is the case, the area of each of these faces is classically just the norm
of each vector, so we may define an area operator through the square of each B, that is

Aµ =
√
Bµ ·Bµ , (2.16)

but this is simply the Casimir L2 of SU(2). The area operator for each face µ is thus
defined by the eigenvalues

Aµ |ψ〉 =
√
jµ(jµ + 1) |ψ〉 , (2.17)

from which one can also define a total area.
In complete analogy, we define moreover the volume operator. It is classically given by

the triple product V =
√

1
3!
|B1 · (B2 ×B3)|, so the operator can be written as

V =

√
1

3!
|εijkBi

2B
j
1B

k
3 | , (2.18)

and one can choose to define these operators with a multiplicative ~ constant.
An important remark to make is that there is a common interpretation of the area opera-

tor on spin-network states as giving the area of the surfaces intersected by the spin-network
edges, comming from the loop quantum gravity construction [8]. This interpretation is con-
sistent with the above definition, since each edge is associated with a representation. Later,
when spin-foam models in 4 dimensions will be discussed (subsection 2.4.2), the reader can
check that indeed each spin-network induced by the foam will have an edge intersecting a
face of a simplex, so this interpretation is still reasonable in the spin-foam formulation.

2.2 Dynamis on a generic background

We have now constructed states and operators that could, in principle, be used in a quan-
tum theory of gravity. Before putting them to good use, we must still discuss what approach
we should take to a quantum theory on a generic spacetime that might not have the nice
properties of the Minkowski universe.

In quantum field theory one is most frequently interested in a Minkowski background.
Notions like asymptotic states and a global time with translational symmetry are then
readily available, and one can construct scattering theory as usual. As remarked in the
first chapter, we do not however expect a quantum theory of gravity to be formulated
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in such a stiff background. The absence of preferred background structures potentiates a
myriad of different situations. In this light a reformulation of the basic ideas is in order.
How are we to think about measurements, states, evolution, etc. on a generic background?
In such a general situation, how should we interpret the spin-network states constructed
above?

Robert Oeckl proposed such a formulation [23] in the framework he called the general
boundary formulation (GBF), taking inspiration from Atiyah’s topological field theories.
The idea is simple. Operationally, one makes measures in quantum physics by establishing
some initial data and measuring again the state of that data at some final instance, re-
peating this process many times and finding a probability frequency for each pair of initial
and final data. Now, considering initial and final data means registering some properties
of a system at two time hyper-surfaces. It is here that one defines the quantum mechanical
state. Between those hyper-surfaces one has no capability of measurement, but one can use
Feynman’s sum-over-histories approach in the bulk to predict how the data at each hyper-
surface is related. The most direct generalization consists then in conceiving of spacetime
regions with boundary as submanifolds of the same dimension of the spacetime manifold,
and assigning Hilbert spaces to boundaries of those regions. One then has to prescribe a
way to associate a number to each state, and this should be done with a sum-over-histories
over the region.

2.2.1 Postulates of GBF

To better understand the framework, we collect here the postulates of the general boundary
formulation. Consider a 4-dimensional spacetime oriented manifold M . Once calls regions
to 4-dimensional sub-manifolds R ⊂ M with boundary Σ. Both the regions and the
boundaries receive an induced orientation from M . If Σ has some orientation, we denote
by Σ̄ the same boundary with opposite orientation. Then we demand:

1. Associated to each boundary there is a Hilbert spaceHΣ. If the boundary is a disjoint
union of boundaries Σ =

⋃
i Σi, then the Hilbert space decomposes as HΣ =

⊗
iHΣi .

2. For each boundary Σ there is an antilinear involution ιΣ : HΣ → HΣ̄. It is compatible
with 1. in the sense that if the Hilbert space decomposes then ιΣ also decomposes as
a tensor product.

3. For each boundary Σ there is a non-degenerate bilinear form (·, ·)Σ : HΣ ⊗HΣ̄ → C.
The form is symmetric (a, b)Σ = (b, a)Σ̄ and compatible with 1. in the sense that the
form of a disjoint union of boundaries is the product of the form for each boundary.
The form also induces the inner product in HΣ through 〈·, ·〉Σ = (ιΣ(·), ·)Σ.

4. For each region R with boundary Σ there is a an amplitude map ρR : HΣ → C.

5. Suppose R is a region with boundary Σ = Σ1∪Σ2. Suppose that the amplitude map
ρR : HΣ1 ⊗HΣ2 → C induces an isomorphism ρ̃R : HΣ1 → HΣ2 . Then we demand ρ̃R
to be unitary.
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6. Let R1, R2 be two regions with boundaries Σ1 ∪Σ,Σ2 ∪Σ such that R1 ∪R2 is again
a region and the intersection is Σ. Then, if ρR1 , ρR2ρR induce maps ρ̃R1 , ρ̃R2 , ρ̃R, then
it must be that ρ̃R = ρ̃R2 ◦ ρ̃R1 .

The physical meaning of these postulates is clear. The first axiom follows from the pre-
ceding discussion. Postulate 2. identifies the boundary with opposite orientation to the
original as its dual in the finite dimensional case. Axioms 3. and 4. construct an inner
product on each Hilbert space and a way of assigning probabilities to states. Postulate
5. is needed to match quantum mechanics with conservation of probabilities, and 6. is a
reasonable consistency condition on gluing.

2.2.2 The amplitude map

There are two important points that need clarification in this framework: the form of the
amplitude map and the meaning of quantum probabilities. Regarding the first, remember
from quantum mechanics that the Feynman propagator has the form

〈x; 0|x; t〉 =

∫ y(t)=x(t)

y(0)=x(0)

Dy e i~S[y] , (2.19)

where one sums over every possible path y(t) that agrees on the boundary with the posi-
tions x(0), x(t), obtaining the transition amplitude between the eigenstate of the position
operator |x〉 = |x; 0〉 and the evolved state |x; t〉 = U(t, 0) |x〉. The usual generalization
one makes in conventional QFT on a Minkowski spacetime is obtained by considering the
field operator Φ and its eigenstates Φ |φ; Σ1,2〉 = φ(Σ1,2) |φ; Σ1,2〉, where Σ1,Σ2 denote two
time hypersurfaces at t1, t2 and φ(Σi) is the field evaluated at one of the surfaces. The
generalized path integral becomes

〈φ; Σ1|φ; Σ2〉 =

∫

ξ(Σi)=φ(Σi)

Dξ e i~S[ξ] , (2.20)

where now the sum is over field configurations ξ that agree with the values of the field φ
on the boundaries. Given two general states |ψ̄〉 , |ϕ̄〉4 defined on Σ1,Σ2 respectively, their
transition amplitude can be computed as

〈ψ̄|ϕ̄〉 =

∫
dα dβ 〈ψ̄|α; Σ1〉 〈α; Σ1|β; Σ2〉 〈β; Σ2|ϕ̄〉

=

∫
dα dβ ψ̄∗(α,Σ1)ϕ̄(β,Σ2)

∫
ξ(Σ1)=α(Σ1)
ξ(Σ2)=β(Σ2)

Dξ e i~S[ξ] ,

4Because we are using greek letters for both the field and the states, we put a bar over the greek letter
|ψ̄〉 to indicate that the state is a linear superposition of the eigenstates |φ〉 of the field operator, in much
the same way that one uses |ψ〉 to indicate a superposition of the position eigenstates |x〉.
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Figure 2.3: The amplitude associated to a state of a field configuration ϕ on the boundary
is found by summing over every possible field configuration ξ in the bulk that agrees with
the one on the boundary.

and the integrals in α, β are computed in the configuration space of the field φ at the
respective boundaries. Note that ψ̄∗(α,Σ1) and ϕ̄(β,Σ2) are wave-functionals of the con-
figuration space at the boundaries. We may now use this special-case expression to propose
an explicit form for the amplitude map ρM . Formally5, we define it as

ρM : HΣ → C

|ψ̄〉 7→
∫

dϕ ψ̄(ϕ)

∫

ξ(Σ)=ϕ(Σ)

Dξ e i~S[ξ] ,
(2.21)

such that it reduces to the well-known case above in the appropriate situation. For a region
with two disjoint boundaries and a unitary identification between the Hilbert spaces, we
indeed have ρM(|ϕ〉 ⊗ 〈ψ|) = 〈ψ|φ〉. Furthermore, this map incorporates the intuitive
notion discussed above that the weight associated to a state should result from a sum-
over-histories that are consistent with that state. In the special case where the state is
a single field configuration |ψ̄〉 = |φ〉, the amplitude reduces to the sum over all possible
configurations that are consistent with the state |φ〉.

2.2.3 Quantum probabilities

To close this section we turn to the interpretation of the probabilities assigned by the
amplitude map. In conventional quantum mechanics, probabilities are usually motivated
in the context of a dynamical interpretation of quantum theory. That it, some initial
state evolves with some probability to a final state, and the probability one finds from the
theory is exactly this one. Now, in much the same way that the framework discussed here
attempts to generalize the usual Hilbert space construction to the situation where there
does not exist a predefined background with nice properties, we must also upgrade our
understanding of quantum probabilities in terms of a time evolution. A perhaps more useful
way of thinking about these probabilities is rather in terms of conditional probabilities, as
Oekl proposed. Note that we are associating states to boundaries without ever specifying
their causal character, i.e. whether they are space- or time-like. This is indeed necessary

5It goes without saying that the rigorous mathematical formulation of the path integral will not be
discussed here.
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in a quantum gravity theory where a metric might not be readily at hand. As such, even
if our spacetime region is composed of two disjoint boundaries, the amplitude associated
to the tensor product of two states, which we usually think of as a transition amplitude
associated to an evolution, could in principle be a correlation between states at the same
instant in time. A truly general-relativistic approach to quantum probabilities must indeed
allow for such correlations to exist, since we do not expect time itself to have any stronger
ontological value than space. We then expect quantum probabilities not to be frequencies
associated to dynamics, but rather to space-time dynamics, in the sense that any two states
on the boundary of a region might be correlated by the laws of physics that describe the
bulk between them.

Of course, our operational ability to measure these correlations might be limited, since
we definitely might have a hard time making sense of what it means measuring a correlation
of two states at the same instant in time. But we can make operationally meaningful
statements by considering those subsets of conditional probabilities that we know how to
measure. Quite generally, given a boundary, if we prepare a set of states P in a subregion
of that boundary, and measure some set of statesM in some other region, we would expect
the correlation

Prob(M|P) =
|ρM ◦ PP ◦ PM|2

|ρM ◦ PP |2
, (2.22)

where PP , PM are projectors into the respective subspaces.
We have now discussed both the construction of spin-network states and the meaning

of quantum states in a general background. We are ready to attempt to formulate a theory
of quantum gravity.

2.3 Spin-foams as discrete spacetime

2.3.1 Spin-networks from foams

Spin-network states for gravity were initially constructed in the context of a canonical ap-
proach to the quantum theory, today widely known as Loop Quantum Gravity (henceforth
LQG). As Baez remarked in [21], the advent of spin-network states allowed for a “rigorous
and compelling picture of the kinematic aspects [...] of quantum gravity”. However, certain
technical necessities in the development of the model, chief among them the construction
of the states only at each spacial hyper-surface of a globally hyperbolic manifold, hindered
a good understanding of the dynamical aspects of the theory. The spin-foam construction,
which will be reviewed here and in the following sections, was developed to address this
concern.

As we argued in Section 2.2, the dynamics of a theory in a general spacetime is to be
understood as an assignment of a probability amplitude to boundary states, such that a
transition amplitude is recovered in the special case where the boundary consists of two
disjoint regions. In this way we want to formulate a model where spin-networks are assigned
to boundaries of spacetime regions. The most intuitive way of associating spin-networks
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to 3-dimensional sub-manifolds of spacetime (the boundaries of the regions) is to consider
a higher-dimensional analogue of a spin-network inside the spacetime manifold. That is,
since a spin-network is in essence a colored combinatorial object with vertices and edges, we
want to think of a colored higher-dimensional construction with vertices, edges and faces,
in such a way that sections of that object become spin-networks. These higher-dimensional
objects are commonly called spin-foams, from the foamy picture they evoke.

Figure 2.4: A spin-foam is a higher dimensional analogue of spin-network, made up of
colored faces, edges and vertices. In this example one can identify a one-vertex spin-
network in the lower part of the foam and a three-vertex one on the top.

There are many ways to specify rigorously what such a higher dimensional object might
be. One such way is using 2-dimensional piecewise linear cell-complexes (which we will
refer to as simply complexes from now on), as is done in [21]. We will not need the concrete
definition of these in our discussion beyond the loose concept of “flat” oriented vertices,
edges and faces in Rn, so the reader interested in the mathematical definition is directed
to the Appendix of [21]. Now we can define a spin-foam:

Definition 2.3.1. A spin-foam F is a triple (κ, ρ, ι) consisting of:

1. A 2-dimensional oriented complex κ.

2. A labeling ρ of each face f of κ by an irreducible representation ρf of G.

3. A labeling ι of each edge e of κ by an intertwiner (see Appendix B for the definition
of these objects)

ιe :
⊗

f∈S(e)

ρf →
⊗

f ′∈T (e)

ρf ′ , (2.23)

where, in analogy to the notation used for the spin-networks, S(e) denotes the set
of faces whose source is the edge e, that is, those faces meeting at e whose orien-
tation agrees with the edge one. The set of faces meeting at an edge with opposite
orientation, i.e those whose target is e, is denoted T (e).

To prescribe how a spin-network is induced by a spin-foam at its boundary we use the
following definition, inspired by [24]:

Definition 2.3.2. The boundary ∂κ of the complex κ is a subcomplex ∂κ ⊂ κ such that
there exists an injective, orientation-preserving affine map c : ∂κ × [0, 1] → κ mapping
∂κ × [0, 1) to an open subset of κ. The interior is defined as κ̊ = κ \ ∂κ. The boundary
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spin-network ∂F induced at the boundary of F = (κ, ρ, ι) is the colored oriented graph
∂F = (∂κ, ∂ρ, ∂ι) obtained by assigning to each boundary edge ē ∈ ∂κ the element ∂ρf
and to each boundary vertex v̄ ∈ ∂κ the element ∂ιe, defined as6

ē : ∂ρf =

{
ρf if f ∈ Sē
ρ∗f if f ∈ Tē

v̄ : ∂ιe =

{
ιe if e ∈ Sv̄ ∩ κ̊
ι∗e if e ∈ Tv̄ ∩ κ̊

. (2.24)

Figure 2.5: An example of how to label the boundary spin-network from a spin-foam. The
faces of the spin-foam are colored, and the boundary is drawn with a dashed line.

2.3.2 Spacetime as a sum-over-foams

Now that we have the structure of a spin-foam in place, we come to a very important
question: how exactly should we expect a spin-foam to describe something like a quantum
spacetime?

Classical spacetime is modeled as a smooth Lorentzian manifold. Our experience with
quantum theories, however, leads us to have two main expectations for a possible model
of quantum spacetime:

• The dynamics of the objects should arise out of a sum over weighted possibilites; this
is the Feynman sum-over-histories interpretation.

• The continuity of classical structures should be recovered from a limiting or averaging
procedure of objects that are actually discrete.

The proposal of spin-foams is then the follwoing: interpret the classical spacetime manifold
as the classical limit (meaning the most probable configuration) of a sum over spacetimes,
and abstract the smoothness of the classical manifold as an approximation of piece-wise
flat structures, obtained by some continuum limit. Each term of the sum, that is each
possible spacetime state, would be described by a spin-foam.

In this context, the most honest way of constructing a quantum theory would probably
be to fix a boundary state, i.e. a spin-network, consider every possible spin-foam that
is coherent with that boundary state, assign a weight to each foam and sum over every

6Note that, unlike what is done in the literature, we do not consider “open” spin-foams, that is spin-
foams where the boundary is not labeled. The reason for this will become clear in the discussion of the
vertex spin-network.
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structure to compute the amplitude of the state. However, much like every other area of
physics, our ability to construct quantum theories is heavily constrained by our classical
experience of the world. It is for this reason that we have a quantization procedure for clas-
sical theories rather than starting from scratch. A less ambitious but perhaps more fruitful
way of obtaining a quantum theory of spacetime would on the other hand be extracting
spin-foams from an already existing smooth manifold. This is moreover necessary for the
use of spin-network states because, although they are in some sense fundamentally combi-
natorial and algebraic objects, our interpretation of them as being associated to functions
of a smooth connection still strongly depends on their embedding on a manifold. Going
forward we will therefore adopt the prespective of spin-foams as arising out of a background
manifold through the concept of complex dual to a triangulation.

2.3.3 Simplicial spin-foams

A triangulation of a topological space X by a simplicial complex κ is a homeomorphism
f : X → κ, where we think of κ as the geometrical realization (as a topological space) of
the combinatorial simplicial complex [25]. It turns out that simplicial complexes admit a
corresponding dual 2-complex (sometimes called the Poincaré dual, or the dual polyhedron)
[26], obtained by associating to the barycenter of every n-simplex a vertex, to every (n−1)-
simplex an edge and to every (n− 2)-simplex a face. In this way, every triangulation of a
manifold associates to it a 2-complex, and we can use this as the complex of a spin-foam.
Let us consider then a n-dimensional spacetime manifold and a triangulation ∆ inducing

Figure 2.6: The minimal region of a triangulation by 3-simplices is the tetrahedron R.
Associated to it there is a 2-complex R∗ and a spin-foam F |R.

the dual complex ∆∗. The triangulation decomposes the spacetime manifold into minimal
pieces, the n-simplices R which we may think of as the regions of GBF discussed in Section
2.2. Moreover, since every n-simplex is bounded by a set Σ of (n−1)-simplices, each R has
a natural boundary, so the dual complex ∆∗ associates to each spacetime region a vertex,
and to each boundary component an edge. Now, following the rationale of GBF, we would
like to use a spin-foam F = (∆∗, ρ, ι) to induce states on each region. Realizing that we
can think of the dual to each region R∗ as 2-complex, the spin-foam F induces spin-foams
in each region FR = (R∗, ρ, ι) simply by restriction FR = F |R, and each of these spin-foams
has a natural spin-network ∂FR associated to it through definition (2.3.2).
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Figure 2.7: The boundary Σ of each minimal region is associated to the boundary spin-
network ∂F of a minimal spin-foam.

We see in this way that a triangulation is a method for prescribing both the set of Hilbert
spaces of the theory and the combinatorial structure used for assigning amplitudes. States
on each boundary Σ are described by the coloring of ∂FR = (Σ∗, ∂ρ, ∂ι), and amplitudes
of those states are found by colorings of FR consistent with the boundary. One can then
choose which region to consider, perhaps as a union of each minimal region, and then focus
on the associated boundary. In full correspondence with the amplitude maps of Section
2.2, we expect each boundary state to have the amplitude

ρR(∂FR) =
∑

{ι}→{e}
{ρ}→{f}

∣∣
∂FR

A(FR) , (2.25)

where A is a weight associated to each foam, eventually derived from a lagrangian theory,
and the notation under the sum indicates that the coloring of R∗ must be consistent with
the coloring of Σ∗.

As an immediate consequence, this construction allows us to assign to each vertex in
∆∗ a probability amplitude computed from the spin-network state associated to it, and
hence each simplex of the triangulation will have a corresponding weight. This weight
is dependent on data on the faces of the spin-foam, which we can interpret as data on
the (n − 2)-simplices bounding each n-simplex. If we restrict to the particular case of a
triangulation of a 4-dimensional manifold we thus recover the quantum tetrahedron of [27],
and we can think of the data on the faces of each tetrahedron as assigning an area state to
each face7.

2.4 Spin-foam models

We will now discuss concrete spin-foam theories based on this framework. To see how the
structure we have been constructing can be used in a theory of gravity, we will discuss first
the simple case of a possible quantization of general relativity in three dimensions. Later
we review the well-known EPRL model, a bona-fide quantum gravity theory.

7Of course, one needs closure conditions to make sure that the set of 4 faces really makes a tetrahedron.
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2.4.1 Riemannian 3d gravity: BF theory

General relativity in three dimensions happens to have a particularly simple form. As we
did in subsection 1.2.2 for the four-dimensional case, one can show that the action for
general relativity in (2 + 1) dimensions without cosmological constant is simply

S
(3)
T =

∫

M

εIJKF
IJ [A] ∧ θK , (2.26)

where, as before, F IJ is the curvature 2-form on TM induced from the local connection
A on a principal G-bundle P (G,M), and θI = θIµ dxµ is the image of an isomorphism
E∗ → T ∗M mapping from the associated vector bundle E∗ = P ×ρR2,1, which we will call
the triad. If we take the case G = SO(3), which is the correct group for three dimensional
Riemannian gravity, we can identify this action with the well-known topological BF theory

SBF =

∫

M

Tr(F [A] ∧B) , (2.27)

where now B is an so(2, 1)-valued 1-form. This is because there is an isomorphism T ∗M →
so(3) [28]. As was to be expected, the equations of motion of this theory look like a simpler
form of (1.26):

δ

δA
→ DBIJ = dBIJ + [A,B]IJ = 0 (2.28)

δ

δB
→ FIJ = 0 . (2.29)

The theory restricts the curvature to be flat and the exterior covariant derivative of B to
vanish. Note that, besides diffeomorphism invariance8, the theory has two types of gauge
symmetry

δA = Dη δB = [B, η] (2.30)

and
δA = 0 δB = Dη , (2.31)

where η is an so(3)-valued function. Since all flat connections are equal up to gauge
transformations, and DB = 0 implies by Poincaré’s lemma that locally B = Dα for some
form α [29], we see from the gauge symmetries that this theory has no degrees of freedom;
it is completely constrained. Furthermore, by choosing a particular topology M = R×M ′

(locally, every manifold has this form) and the temporal gauge A0 = 0, one can easily
see that ∂L

∂Ȧ
= B, implying that B is the momentum conjugate of A. We are therefore

interested in the space L2(A/G), so we can apply our spin-foam machinery.

8As discussed, all field theories are diffeo-invariant. However, usually in field theory one considers
transformations by diffeos of all fields except the metric, finding, as we expect, that the theory is usually not
invariant under such transformation. In BF theory there is no metric, so the “diffeomorphism” invariance
is automatically satisfied.
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Let us now introduce an oriented triangulation ∆ of M , and consider its oriented dual
2-complex ∆∗. The formal path integral for the theory is

Z(M) =

∫
DADB ei

∫
M Tr(F [A]∧B)

=

∫
DA δ(F [A]) ,

where we formally integrated over B to obtain the Dirac delta. In much the same way that
we did in the context of spin-networks in subsection 2.1.1, we can discretize this theory
on the dual complex ∆∗: we associate parallel transports of A to the edges e ∈ E ⊂ ∆∗,
inducing in each face f ∈ F ⊂ ∆∗ a curvature as a product of group elements, i.e. an
holonomy, which is known to relate to the curvature via the Ambrose-Singer theorem. The
discrete path integral then takes the form

Z(∆∗) =

∫ ∏

e∈E
dge

∏

f∈F
δ

(∏

e∈∂f
ge

)
, (2.32)

where we are using the bi-invariant Haar measure. Using the tools from harmonic analysis
in locally compact groups described in Section B.2, one can easily show that the delta
function can be decomposed as

δ(g) =
∑

λ∈Λ

dim(ρλ)χρλ(g) , (2.33)

where the sum is taken over the irreducible unitary representations of SO(3). The partition
function then expands as

Z(∆∗) =

∫ ∏

e∈E
dge

∏

f∈F

(∑

λ∈Λ

dim(ρλ)Tr

[∏

e∈∂f
ρλ (ge)

])

=
∑

Λ→F

∫ ∏

e∈E
dge

∏

f∈F

(
dim(ρf )Tr

[∏

e∈∂f
ρf (ge)

])

=
∑

Λ→F

[∏

f∈F
dim(ρf )

]∫ ∏

e∈E
dge Trf∈F

[∏

f∈F

(∏

e∈∂f
ρf (ge)

)]

=
∑

Λ→F

[∏

f∈F
dim(ρf )

]
Trf∈F

[∏

e∈E

(∫
dge

∏

f : e∈∂f
ρf (ge)

)]

where in the first equality we again used the trick of subsection 2.1.1 to interchange the
product over faces with the sum over labels, and in the last line Trf∈F denotes contraction
of the indices that follow for each single face. Referring to Section B.3, we identify the
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Figure 2.8: The path integral assigns to each dual edge a projector from the tensor product
of three representations, one for each dual face. After connecting the arrows that lie on
the same face one gets a 6j symbol for each tetrahedron.

argument of the trace to be a product for each edge of projector maps

πe :
⊗

f∈S(e)

Hρf

⊗

f∈T (e)

H∗ρf → Inv


 ⊗

f∈S(e)

Hρf

⊗

f∈T (e)

H∗ρf




πe =

∫

SU(2)

dge
⊗

f∈S(e)

ρf (ge)
⊗

f∈T (e)

ρ∗f (ge) ,

(2.34)

which we may also think of as intertwiners ιe :
⊗

f∈S(e)Hρf →
⊗

f∈T (e)H∗ρf . For three
SO(3) representations there is only one scalar invariant subspace, and using the diagram-
matic notation of Appendix C we may then write

Z(∆∗) =
∑

Λ→F

[∏

f∈F
dim(ρf )

]
Trf∈F

[∏

e∈E
πe

]

=
∑

Λ→F

[∏

f∈F
dim(ρf )

]
Trf∈F



∏

e∈E

1




=
∑

Λ→F

[∏

f∈F
dim(ρf )

]


∏

v∈V
√


 , (2.35)

where in the last equation we used the fact that there are four edges for each vertex
v ∈ V ⊂ ∆∗, and two vertices for each edge. The way the projectors are contracted
is dictated by the face traces. We have omitted labels, but they can be reinstated by
referring to equation C.26. We have thus found the partition function of BF theory in the
spin-foam formulation to be a sum over colorings, with the weight of each coloring being an
assignment of a 6-j symbol to each vertex of the dual complex, i.e. to each tetrahedron of
the triangulation. Notice that the 6-j symbol has the exact same combinatorial structure
as the boundary spin-network of a tetrahedron spin-foam as in Figure 2.7, so we may think
of each symbol as the amplitude corresponding to each boundary spin-network. Referring
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back to equation (2.25), this is exactly what we expect from a spin-foam amplitude ρR,
with the spin-foam weight

A(∂F |R) =


 ∏

f∈(F∩R∗)
dim(ρf )




 ∏

v∈(V∩R∗)
6j


 . (2.36)

Closing our eyes to possible regularization problems of the above expression, we have
succeeded at constructing the BF spin-foam theory.

One last comment must be made regarding a small nuance on the combinatorics of the
6j-symbol appearing in equation (2.35). Recall that the edge orientations in the diagrams
encode the domain-codomain structure of the invariant element, according to what was
defined in Appendix C. The orientations on the clebsches in the second line of (2.35)
depend therefore on the agreement between face and edge orientations of the dual complex,
as in equation (2.5). In order to take the trace over the matrix elements, i.e. contract
the 3j-symbols into a 6j-symbol, one needs to use either the symbol itself or its hermitian
conjugate (diagrammatically, the left or the right symbol on the second line of (2.35)).
One can check [24] that a coherent choice for the contraction is given by

Tr


⊗

S(v)

ι†
⊗

T (v)

ι


 = 6j . (2.37)

Note that, due to this requirement, changing the orientation of an edge does not change the
orientations of the diagrams, because the conjugation generated by a different orientation
relative to the face is compensated by the conjugation necessary to take the trace. The
orientations in the diagrams therefore change only if a change in a face orientation is
operated (furthermore ensuring coherence of the diagram).

2.4.2 Lorentzian 4d gravity: the EPRL model

Now we tackle a full-fledged model of quantum gravity. In subsection 1.3.2 we showed
that general relativity can be written as a constrained BF theory. Since we already have a
functional spin-foam model for BF theory, this suggests that we attempt to construct the
quantum gravity theory starting from it. We will therefore consider the action of equation
(1.25) without cosmological constant for G = SL(2,C) (the double cover of the Lorentz
group),

ScBF =

∫

M

BIJ ∧ F IJ + φIJKLB
IJ ∧BKL , (2.38)

which is classically equivalent to the topological BF theory with an additional simplicity
constraint

SBF =

∫

M

BIJ ∧ F IJ , BIJ ∧BKL = εIJKL V , (2.39)
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where BIJ , F IJ are sl(2,C)-valued 2-forms and V is some non-vanishing 4-form. Since
the simplicity constraint forces the B field to be a wedge of tetrads BIJ = ±θI ∧ θJ or
BIJ = ± ? (θI ∧ θJ), we may recover the Holst action (1.23) by writing9

S =

∫

M

F IJ ∧
(

1 +
1

γ
?

)
BIJ , BIJ = ± ? (θI ∧ θJ) (2.40)

A possible way forward is hence to quantize the above BF version of the Holst theory,
as we have done in the section before, and apply the simplicity constraints at the quantum
level. This implies modifying the previous spin-foam model in three ways: we have to go
one dimension higher, we have to consider the Lorentzian case and we have to constrain
the states. Going to four dimensions is in principle a trivial matter; one needs only to
consider in equation (2.34) projectors with four legs. The other two points require more
discussion.

The Lorentzian case

We focus on the right regular representation of SL(2,C) on the space of square integrable
functions on that group. As stated in Appendix D, the unitary representations ρχ of
SL(2,C) are constructed on the Hilbert spaces Hχ of SU(2) functions satisfying a covari-
ance condition. Each Hilbert space is labeled by two complex numbers χ = (n1, n2) such
that their difference is an integer. In the particular cases when n1 = −n∗2 one may relabel
the spaces by an integer n and a real number p, denoting now χ = (n, p), and this is called
the principal series of unitary representations. A basis for the principal series is given by
the set {

ϕχj,m =
√

2j + 1Dj
n
2
m

∣∣∣∣ j ≥
∣∣∣n
2

∣∣∣ , |m| ≤ j

}
, (2.41)

where Dj are the SU(2) Wigner matrices, and in this |χ; j,m〉 basis we may construct
analogous SL(2,C) Wigner matrices Dχ

j1m1j2m2
(g) = 〈χ; j1,m1| ρχ(g) |χ; j2,m2〉 as in equa-

tion (D.10). A Fourier transformation can be constructed for L2(SL(2,C)) functions using
this basis, and there exists a Plancherel theorem

f(g) =
1

2

∑

j,m,l,q

∫
dχ (n2 + p2)

∫

SL(2,C)

dh (D∗)χjmlq(g)f(h)Dχ
jmlq(h) , (2.42)

where
∫

dχ =
∑

n

∫
dp, allowing for the L2 space to be decomposed into a direct integral

of the principal series Hχ spaces

∫

⊕
dχ

∞⊕

j=|n
2
|
Hχ
j ' L2(SL(2,C)) , (2.43)

9We are writing the Hodge operator next to the Immirzi parameter, unlike what we did in Chapter 1.
This is to make contact with the literature, and it has no fundamental impact in what follows.
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where Hχ
j denotes the space spanned by the ϕχj,m functions, irreducible under the right

regular representation.
For the case at hand, this whole discussion serves the purpose of justifying an analogue

of equation (2.33). Using equation (2.42), it is immediate to see that the Dirac delta
decomposes as

δ(g) =
1

2

∑

n

∫
dp (n2 + p2)

∑

j,m

(D∗)χjmjm(g) . (2.44)

This integral is of course badly divergent and needs a regularization, but we will not concern
ourselves with this problem right now.

Discretizing the constraints

The problem now is to restrict the quantum states of the model such that they satisfy the
constraints in equation (2.40). A particularly simple way of doing so is to consider again
the full form of the simplicity constraints, BIJ ∧ BKL = εIJKL V , and extract from it a
condition on the algebra elements. By expanding BIJ = BIJ

µν dxµ ∧ dxν , the simplicity
constraints are equivalent to the identity (no summation on the greek indices)

εIJKLB
IJ
µνB

KL
γδ = εµνγδv , (2.45)

for some v ∈ R. This equation should now be applied in the context of a discretization of
the action. In the same way that we associated holonomies to faces in the case of the 3d
model, the 2-forms B are naturally associated to 2-simplices (triangles) of each 4-simplex
of a chosen triangulation ∆. We therefore define, for each triangular region r, the objects

bIJr =

∫

r⊂∆

BIJ , (2.46)

which are elements of the Lie algebra of SL(2,C). We will call these objects bivectors, for
reasons that will become clear below. The constraints of equation 2.45, although before
interpreted as global constraints on the field B, now become constraints on the local br
bivectors

εIJKL

∫

r,r′
B|rIJ ∧B|r′KL =

∫

r,r′
V , (2.47)

where the integration is over the affine span of two triangle regions r, r′, which may or not
be disjoint. This allows for three distinct cases [15]:

1. r = r′: εIJKLb
IJ
r b

KL
r = 0 , (2.48)

2. r 6= r′ and r ∩ r′ 6= ∅: εIJKLb
IJ
r b

KL
r′ = 0 , (2.49)

3. r 6= r′ and r ∩ r′ = ∅: εIJKLb
IJ
r b

KL
r′ 6= 0 , (2.50)

differing by the fact that in the first two cases the affine span is of a lower dimension than
the form to be integrated. In what follows we will disregard condition number 3, as it turns
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out it is dynamically imposed [30]. It furthermore turns out that the first two constraints
(2.48),(2.49) admit a geometrical interpretation [31] that simplifies their formulation.

Indeed, note that equation (2.48) is a simplicity condition on the IJ indices of the
bivectors bIJr (this is the reason why we called them bivectors). The proof is straightforward
and follows the reasoning of the analogous one in subsection 1.3.2. Each bivector can then
be written as an antisymetrized product of vectors br = e∧e′ or its Hodge dual br = ?(e∧e′),
and since each bivector corresponds to a triangle region, we may think of each elementary
vector e, e′ as an edge of that triangle, with the area of that triangle given by the norm of br.
Furthermore, the second equation asserts that only three of the four vectors constituting
br, br′ are linearly independent. The first two constraints (2.48) and (2.49) then become
the following geometrical conditions

1. Each br is simple, i.e. it is the exterior product of two vectors or its Hodge dual,

2. The planes defined by bivectors br, br′ sharing an edge span a 3-dimensional space.

Note that, together with a closure condition
∑

r∈t br = 0, these constraints are enough to
define a non-singular tetrahedron t. Using this geometrical interpretation, a condition that
specifies to either sector of the simplicity constraints can be constructed. We have two
important lemmas from [31]:

Lemma 2.4.1. A bivector bIJr in R4 is simple if and only if there exists a third vector nI
such that bIJr nJ = 0, which holds if and only if (?br)

IJnJ = 0.

Lemma 2.4.2. Two simple bivectors bIJr , bIJr′ span a 3-dimensional subspace of R4 if and
only if there exists a vector nI such that bIJr nJ = 0 ∧ bIJr′ nJ = 0, which holds if and only
if (?br)

IJnJ = 0 ∧ (?br′)
IJnJ = 0.

Note that the lemmas above hold equivalently whether we use br or ?br, but as remarked
in [31] this equivalence is not valid if one considers more than a pair of bivectors. That is
to say that, while each of the constraints

{
nIb

IJ
r = 0, for all r in the same tetrahedron t

nI(?br)
IJ = 0, for all r in the same tetrahedron t

(2.51)

is enough to enforce equations (2.48) and (2.49), they cannot hold for the same tetrahedron
at the same time for clear dimensional reasons. A choice of one of the constraints is then a
specialization of the aforementioned equations to a particular sector. The implementation
of the constraints nI(?br)IJ = 0, ∀r ∈ t in an SL(2,C) spin-foam model is known as the
Engle-Pereira-Rovelli-Livine model [32] (henceforth EPRL), and this is the construction
we will follow10.

10Note that, since we are considering the Holst action (2.40), both the constraints would be valid choices
(under an eventual redefinition of the Immirzi parameter).
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Next we must translate this condition into a restriction on the states of the theory. Since
the variable conjugate to A in (2.40) is associated to the bivector r̃IJf =

(
1 + 1

γ
?
)
bIJr , we

start by inverting this equation to find

bIJr =
γ2

γ2 + 1

(
1− 1

γ
?

)
b̃IJr . (2.52)

Each bivector is an element of the algebra sl(2,C), and therefore we may impose the
constraints on the generators JIJ of the group rather than on the components of br =
bIJr Jr,IJ . The second equation of (2.51) then becomes a constraint on the generators, and
it reads

nI ?

(
1− 1

γ
?

)
J IJr = δ0

I

(
εIJKLJ

KL
r +

1

γ
J IJr

)
(2.53)

=
1

2
ε0jklJ

kl
r +

1

γ
J0j
r ,

where in the first equality we have specified to the case nI = δ0
I as in [32], and the lower-case

roman letters take non-zero values. This is a very fortunate combination of the generators,
because the terms appearing in the last equation are the well-known boost and rotation
generators Ki = J0i and Li = εijkJ

jk/2 of SL(2,C). The condition of equation (2.51) can
now be written in its final form as

Cj
r = Ljr +

1

γ
Kj
r = 0 . (2.54)

To find the true Hilbert space of the theory, one would then consider the subspace that
is simultaneously annihilated by all the Cj

r . It turns out, unfortunately, that the constraint
Cj
f found above cannot be imposed directly on the states of the model, the reason being

that the algebra of constraints does not close [30], as one sees from the commutator

[Ci
r, C

j
r′ ] = 2δrr′ε

ij
kC

k
r − δrr′

γ2 + 1

γ2
εijkL

k
r . (2.55)

Clearly then, unless one sets γ as to make the additional term vanish or specifies Lr = 0,
one cannot strongly impose Cj

r |ψ〉 = 0 for all j.

Implementing the constraints

There is more than one way to implement some weaker version of the Cj
t constraints, but

the original EPRL proposal is to consider a classicaly equivalent master constraint, defined
as

Mr = Cr,iC
i
r =

γ2 + 1

γ2
L2
r −

1

γ2
C1,r −

2

γ
C2,r , (2.56)
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where C1, C2 denote the Casimirs of SL(2,C), given in terms of K,L by [33]11

C1 = L2 −K2 , C1 |(n, p); j,m〉 =
1

4
(n2 − p2 − 4) |(n, p); j,m〉

C2 = −L ·K , C2 |(n, p); j,m〉 =
1

4
pn |(n, p); j,m〉 ,

(2.57)

and look for its smallest positive eigenvalue12 (as was to be expected, the master constraint
does not have the zero eigenvalue in its spectrum in the space γ, p ∈ R, j ∈ N/2 and n ∈ Z,
as one can check). The master constraint acts on the states as

γ2M |(n, p); j,m〉 =

[
1

4
(p2 − n2)− 1

2
γpn+ (γ2 + 1)j(j + 1) + 1

]
|(n, p); j,m〉 , (2.58)

with the requirement from the representation theory of SL(2,C) that j ≥ |n/2|.
We then want to minimize λ(p, n, j) = p2−n2− 2γpn+ 4(γ2 + 1)j(j+ 1) + 4 > 0 in the

space mentioned above. From ∂pλ = 0 we find p = γn, a condition which must be satisfied
at the minimum, and substituting back we find

λ(γn, n, j) = (γ2 + 1)[4j(j + 1)− n2] + 1

≥ (γ2 + 1)

[
2|n|

( |n|
2

+ 1

)
− n2

]
+ 1

≥ 2(γ2 + 1) + 1 , (2.59)

where in the second line we used the smallest possible j = |n|/2 and in the last line
n = ±1. We have just found the minimum of λ, attained for the particular combination
j = 1/2, n = ±1. To find which other combinations of j,m allow λ to attain that minimum,
we simply plug back λ(γn, n, j) = 2(γ2 + 1) + 1, obtaining n2 = 4j(j + 1) − 2. This has
no solutions beside the previously found one, so the usual procedure is now to take the
approximation of large spin j, and thus get the solutions

{
n ' 2j

p ' 2jγ .
(2.60)

The SL(2,C) representations satisfying these equations are usually refered to as simple
representations in the literature.

We thus see that the chosen constraints restrict the states |(n, p); j,m〉 to be of the form
|(n, γn);n/2,m〉 with n > 2 (j must be a half-integer) and, in accordance with the basis
(2.41), these are indeed the states with the smallest possible j for a given n. Additionaly,
one sees that the previously-continuous label p now has quantized values in proportion to

11Note that in the cited reference the author is using as the p, n parameters as half of our own p, n
parameters, and this is the reason for the difference in the appearence of the eigenvalues of the Casimirs.

12Although the function looks like it can go to negative infinity by taking n large enough, one needs to
remember that j is at least half the absolute value of n.
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the Immirzi parameter. Finally, note that then we have an isomorphism I of Hilbert spaces
(recall that a basis for Hχ is given by (2.41)),

I : L2(SL(2,C))|constr. → L2(SU(2))

|(γn, n);n/2,m〉 7→ |n/2,m〉 (2.61)

L2(SU(2))→ L2(SL(2,C))|constr.

|j,m〉 7→ |(2jγ, 2j); j,m〉 , (2.62)

in essence implying that for every function on SL(2,C) that can be constructed from the
restricted states there exists a unique SU(2) function, and vice-versa. Moreover we have
projector maps Γγ : L2(SL(2,C))→ L2(SL(2,C))|constr. ' L2(SU(2)),

Γγ : L2(SL(2,C))→ L2(SU(2))

D
(p,n)
j1m1j2m2

(g) 7→ Dn/2
m1m2

(u) ,
(2.63)

where u ∈ SU(2) ⊂ SL(2,C). There is also an induced embedding depending on the
Immirzi parameter,

Γ†γ : L2(SU(2))→ L2(SL(2,C))

Dj
m1m2

(u) 7→ D
(2jγ,2j)
jm1jm2

(g) .
(2.64)

The physical Hilbert space

It follows from the preceding discussion of Section 2.2 that the Hilbert spaces of the theory
should be defined on the boundary Σ of spacetime regions R. As discussed in the first sec-
tion of this chapter, we expect spin-network states on the space L2(SL(2,C)|Eφ|/SL(2,C)|V|φ)
for an embedded graph φ on Σ. However, according to subsection 2.3.3, we would also like
the graph associated to these states to be defined by the structure of the dual complex
∆∗ of a spacetime triangulation ∆. In terms of the edges E , vertices V and faces F of
Σ∗ ⊂ ∆∗, we then expect the Hilbert spaces

hΣ =
⊕

(χ,j)→F

⊗

e∈E
InvSL(2,C)

(⊗

f∈Se
Hf

⊗

f∈Te
H∗f

)
(2.65)

for the unconstrained theory, where (χ, j) → F denotes a labeling of SL(2,C) represen-
tations for each face. These are the Hilbert spaces we must now constrain, and to the
resulting physical Hilbert space we will call HΣ. The EPRL choice is to define HΣ as

HΣ =
⊕

j→F

⊗

e∈E
InvSU(2)


 ⊗

f∈S(e)

H(2jfγ,2jf )
jf

⊗

f∈T (e)

H∗(2jfγ,2jf )
jf


 , (2.66)

which we now comment on. Note that the solution of the constraints was found above by
specifying a form for the normal vector nI = δI0 at every tetrahedron in equation (2.53),
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corresponding to setting all tetrahedra to be space-like with respect to the internal metric
ηIJ . However, this vector is clearly not invariant under the action of the full SL(2,C)
group, being only invariant under some SU(2) subgroup, so we cannot expect the states
to be invariant with respect to the initial gauge symmetry. Geometrically, we may indeed
think of the possible choices of normal time-like vectors as elements of the upper sheet of
the hyperboloid H+ = {x ∈ R3,1|x2

0 − ~x2 = 1}, and one can show SL(2,C)/SU(2) ' H+

[34]. The role of the simplicity constraints, unsurprisingly, is then a degree of freedom
reduction by breaking some of the symmetry of the theory. While the original EPRL
model took the same choice we did for the normal vector, more general constructions are
available, making use of the concept of projected spin-networks, which allow for a more
flexible description of an nI object at each tetrahedron. On this the reader is directed to
the relevant literature, e.g. [35].

To arrive at the physical Hilbert space from the unconstrained BF theory, we therefore
want to project hΣ to HΣ. To this end, consider now the embedding Γ†γ above, and recall
the SU(2) projectors as in equation (2.34), but this time in a four-dimensional context
(this changes only the number of tensored Hilbert spaces), and denote them π̃e. Consider
also the same type of projectors but now for the SL(2,C) Hilbert spaces, which we call πe.
Using the Γγ projector, we can construct a map going from a tensor product of SL(2,C)
spaces to an invariant subpace under the action of SU(2) by composing f := Γ†γ ◦ π̃e ◦ Γγ.
This is then a map:

f :
⊗

f∈S(e)

H(pf ,nf )
jf

⊗

f∈T (e)

H∗(pf ,nf )
jf

→ InvSU(2)


 ⊗

f∈S(e)

H(2jfγ,2jf )
jf

⊗

f∈T (e)

H∗(2jfγ,2jf )
jf


 . (2.67)

The projection from hΣ to the physical space can therefore be achieved simply by taking
f(hΣ). Since the unconstrained spin-model defines the space hΣ precisely through a set
of projectors πe, we may define our new model by choosing, in the spin-foam partition
function, the assignment πe → πe ◦ f ◦ πe (we choose this instead of πe → f ◦ πe simply for
symmetry reasons).

Putting everything together

Now we can finally write down the spin-foam partition function for the EPRL model. We
start as we did in 3d with the unconstrained BF theory,

Z(M) =

∫
DADB ei

∫
M Tr(F [A]∧B) (2.68)

=

∫
DA δ(F [A]) , (2.69)

where now M is four-dimensional and the fields take values in the sl(2,C) algebra. As
before, we also introduce an oriented triangulation ∆ inducing a dual complex ∆∗. We
denote the set of faces and edges of the dual complex by F , E , respectively, and we write
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down the same discretized action as above

Z(∆∗) =

∫ ∏

e∈E
dge

∏

f∈F
δ

(∏

e∈∂f
ge

)
, (2.70)

where now crucially the group integration is over SL(2,C). Now we consider the expansion
of the Dirac delta of equation (2.44). Using the notation (note that this trace is different
from the trace defined for the Fourier transform of SL(2,C) functions above)

Tr[Dχ] :=
∑

jm

Dχ
jmjm , (2.71)

and droping the normalization factor in the expansion of the delta, we find

Z(∆∗) =

∫ ∏

e∈E
dge

∏

f∈F

(∑

n∈Z

∫

R
dp (n2 + p2)Tr

[∏

e∈∂f
(D∗)χ (ge)

])

=
∑∫

χ→F

∫ ∏

e∈E
dge

∏

f∈F

(
(n2 + p2)fTr

[∏

e∈∂f
D∗f (ge)

])

=
∑∫

χ→F

[∏

f∈F
(n2 + p2)f

]∫ ∏

e∈E
dgeTrf∈F

[∏

f∈F

(∏

e∈∂f
D∗f (ge)

)]

=
∑∫

χ→F

[∏

f∈F
(n2 + p2)f

]
Trf∈F

[∏

e∈E

(∫
dge

∏

f : e∈∂f
D∗f (ge)

)]
,

where we have followed the exact same steps used before for the three-dimensional theory,
and by (n2 + p2)f we mean the sum using the assigned values (n, p) to a face f . The trick
of interchanging the sum with the product, which we have used very frequently, is in this
case considerably less justified. However, since in the end the p labels will be quantized
and its integral will reduce to a sum, we assume we can proceed.

The argument of the trace is again a projection map for each edge,

πe :
⊗

f∈S(e)

H∗Df
⊗

f∈T (e)

HDf → Inv


 ⊗

f∈S(e)

H∗Df
⊗

f∈T (e)

HDf




πe =

∫

SL(2,C)

dge
⊗

f∈S(e)

D∗(ge)
⊗

f∈T (e)

Df (ge) ,

(2.72)

and here we can implement the simplicity constraints using the map of equation (2.67).
To do so, we need to replace each of the above projectors πe with the constrained ones,
and this can be done by composing each projector of the unconstrained spin-foam with f .
Since f is made up of the projecting maps Γγ, the inclusion of f at every edge also collapses
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the integral and sum over (p, n) labels to a sum over j labels. Using ∆(p,n) = (p2 +n2), the
partition function then takes the form

Z(∆∗) =
∑∫

χ→F

[∏

f∈F
(n2 + p2)f

]
Trf∈F

[∏

e∈E
πe ◦ f ◦ πe

]

=
∑

j→F

[∏

f∈F
j2
f (γ

2 + 1)

]
Trf∈F

[∏

e∈E

∫
dχ dχ′ ∆χ∆χ′

χ′

f

χ
]

=
∑

j→F

[∏

f∈F
j2
f (γ

2 + 1)

]
Trf∈F


∏

e∈E

∑

ι

∫
dχ dχ′ ∆χ∆χ′

Γ†
γΓγ

χ′χ ι




=
∑

j→F

[∏

f∈F
j2
f (γ

2 + 1)

]



∏

v∈V




5∏

i=1

[∑

ιi

∫
dχi∆χi

]






=
∑

j→F

∑

ι→E

∫
dχi∆χi

[∏

f∈F
j2
f (γ

2 + 1)

][∏

e∈E

]
∏

v∈V


 .

In the second line we used that each edge of a 4-simplex is shared by four faces, and
throughout omitted the normalization diagrams for simplicity of the presentation. We
represent the SL(2,C) projector in black in terms of the Clebsch-Gordan coefficients.
In the third line we have expanded the f map in terms of the SU(2) Clebsch-Gordan
in blue and the green projectors Γγ, whose matrix coefficients are usually called fusion
coefficients in the literature. In the fourth line we have contracted the indices of the
projectors around each face, and in this way finding an SL(2,C) 10j-symbol for each
vertex, and five numbers related to the fusion coefficients. In the last line we translated
the sum over SU(2) intertwiners to the beginning of the expression. The integration over
SL(2,C) was also pushed to the left and written in a simplified way to declutter the
notation. The amplitude associated to each vertex spin-network finally reads

A (∂F |R) =

∫
dχi∆χi


 ∏

f∈(F∩R∗)
j2
f (γ

2 + 1)



[∏

e∈E
f(ι, χ)f ∗(ι, χ)

]
 ∏

v∈(V∩R∗)
10j(χ)


 ,

(2.73)
where now each minimal spin-foam ∂F |R is made up of a 2-complex ∆∗ with SU(2) j-
representation labels on the faces and ι-intertwiner labels on the edges. By f we denote the
numbers constructed from the fusion coefficients, and the SU(2) and SL(2,C) intertwiners.
The 10j symbol is between the constrained representations, and also depends on the choice
of a continuous χ label for each intertwiner.
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Having discussed the model, let us now take a step back and comment on the construc-
tion we presented. Starting from a constrained topological lagrangian for gravity (1.25),
classically equivalent to the Einstein-Hilbert theory in the absence of matter, we have de-
fined a way of assigning amplitudes to spin-network states associated to the boundaries
of spacetime regions. The amplitude was derived from a path-integral/sum-over-histories
construction, and the constraints imposed after quantization. While the final expression
(2.73) for the amplitude is divergent due to the non-compact nature of SL(2,C), having the
need for a regularization procedure, the amplitude is still non-perturbative in nature. For
these reasons the model seems to faithfully implement the expectations of subsection 1.1.4
for a quantum theory of gravity, up to a complete background independence (note that
the amplitude assigned to the state seems to depend on the particular triangulation one
chooses). On this subject we note that a full spin-foam amplitude is expected to be found
only after some procedure for removing the dependence on the triangulation is carried out,
for example by a weighted summing over every possible dual-complex consistent with the
boundary structures. We mention that the very promising group field theory framework
[36] was developed, among other reasons, to tackle precisely this problem.

It is also worthwhile to remark that the boundary Hilbert spaces defined by the EPRL
model have a very similar structure to the ones one deals with in the loop quantum gravity
approach, there being the expectation that this framework can be understood as a covariant
formulation of LQG. It is likely that the next step in the maturation of the theory will be
in the direction of understanding the continuum and classical limits of the model, such that
a correspondence to conventional GR at lower energies can be established. This remains a
difficult problem.



Chapter 3

Causality Considerations

Having discussed in the previous chapter the EPRL model, itself a bona fide theory of
quantum gravity, we now turn to a collection of considerations regarding the possible causal
structure we may associate to spin-foam models. We start by introducing the general
framework of quantum causal histories, and, after proposing a notion of causality on a
spin-foam, we establish a correspondence between both frameworks. Because we expect
spin-foams to generate a great number of causal loops, we also investigate the behavior of
evolution operators in the presence of those loops.

3.1 Quantum causal histories

Between the many possible models studied for quantum gravity, the causal sets approach
and derivative frameworks remain some of the most popular. In this section we introduce
the structure of these models.

3.1.1 The causal sets proposal

Although in physical analysis of general relativity one is not frequently worried about the
particular topology with which the spacetime manifold M is defined, it turns out [37] that
one may choose a topology for M that in some sense encodes important proprieties of
that spacetime, e.g. its causal structure. In the article just mentioned such a topology is
constructed, called the path topology, defined in the following way:

Definition 3.1.1. Let (M, g) be a smooth 4-dimensional Lorentzian manifold without
boundary, and M the topology on M . The path topology P is defined to be the finest
topology inM such that the induced topology on time-like curves coincides with the original
topologyM.

Soon after this new topology for spacetime was proposed, a very strong result which
referred to it was proven in [38] by Malament. It turns out that the following fact holds:
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Theorem 3.1.1 (Malament). If (M, g) is a smooth 4-dimensional Lorentzian manifold
without boundary and f : (M, g) → (N, h) is a homeomorphism with respect to the path
topology, then f is a smooth conformal isometry.

Here conformal isometry means an isometry up to a conformal transformation i.e. a
homeomorphism inducing the association g 7→ Ω2h with Ω ∈ C∞(M).

This is the inspiration to the causal set approach to quantum gravity (a good review is
[39]). The hope is that one is able to recover every possible information about spacetime
solely from knowing both the causal relations enforced by that spacetime and how to assign
a volume to fix the unknown conformal factor. These informations are easy to categorize
if one furthermore internalizes the assumption of a discrete spacetime (much like the spin-
foam approach does). A causal set, then, is a partially-ordered set (or poset) C with a
relation � between some of its elements. The elements of the set are taken to be akin
to spacetime events, while the partial ordering is associated to a directed causal relation
between them. If x is in the future of y then we write x � y. The relation � must satisfy:

1. Transitivity: ∀ x, y, z ∈ C, x � y ∧ y � z ⇒ x � z.
If an event is causally related to a second, and the second is causally connected to a
third, then the first and the third must also be causally related.

2. Antisymmetry: ∀ x, z ∈ C, x � y ∧ y � x⇒ x = y.
There should be no closed causal loops: an event cannot be in the future and in the
past of another.

3. Local finiteness: ∀ x, y ∈ C, |{z ∈ C|x � z � y}| <∞.
There should only be a finite number of events between the past and the future of two
chosen events.

4. Reflexivity: ∀ x ∈ C, x � x.
An event is causally connected to itself.

It turns out that finite partially ordered sets admit a representation as an oriented
graph, called the Hasse diagram. To draw it, one assigns vertices to elements of the set
and ordered edges between them such that they represent the shortest causal relation, that
is, if there is an edge from a vertex x to a vertex y then there does not exist any z such
that y � z � x.

The causal set program seeks to extract physics from this extremely simple framework.
Causal sets approximate Lorentzian manifolds by referring to Malamant’s theorem: let the
causal relations of events be described by the poset, and fix the conformal factor with the
natural volume measure that comes from counting subset elements. One way to look at
this correspondence is to consider a sprinkling of the causal set on a Lorentzian manifold
in accordance with its causality structure. One usually considers a Poisson embedding
Φ : C →M such that the probability of finding n elements in a volume v is

P (n, v) =
(ρv)n

n!
e−ρv , (3.1)



48 3. Causality Considerations

Figure 3.1: An example of a causal set.

and, as aimed for, the expectation value relates to the volume as 〈n〉 ∼ ρv for large n. The
problem of how to extract a single continuum spacetime is still an open question in the
causal sets theories however, although the expectation is that this is possible.

3.1.2 Adding quantum structure

The fact that the causal set approach is dependent on what is essentially a graph that can
be embedded on a manifold seems to suggest a possible relation with spin-networks and
spin-foams. With this in mind, a modification to the causal set framework was proposed
by Markoupolou in [40]. In much the same way that spin networks and spin-foams encode
algebraic data besides the combinatorial one, Markopoulou’s proposal consists exactly in
appending Hilbert spaces and quantum states to causal sets.

One would like to define unitary operators between the Hilbert spaces at the vertices
of the causal set graph, interpreted as an evolution of the states from one Hilbert space
to the other. To this end, consider for example the left Hl and right Hr Hilbert spaces at
both ends of the diagonal middle arrow in Figure 3.1. Since the direction of the graph is
to be interpreted as a causal relation, one should expect the states in Hr to be related to
the states in Hl, but also to the states below Hr. However, a unitary operator from Hl to
Hr would uniquely determine all the states in Hr solely from the states in Hl, without any
influence from states in the vertex below Hr. A more reasonable construction, therefore,
would be to consider unitary operators not between vertices, but between sets of vertices
constituting a complete past and a complete future of some event. To make this explicit,
we state first the following definitions:

1. The causal past P of an event x is the set of all events to the past of x, i.e. P (x) =
{y ∈ C |x � y}. The causal future F is analogously defined.

2. An acausal subset A ⊂ C is a subset of C where all elements are pairwise unrelated.

3. An acausal set A is a complete past of x if every element of P (x) is related to an
event in A. The complete future is analogously defined.

4. A complete pair is a pair of acausal sets A,B such that A is a complete future for
every element in B and B is a complete past for every element in A.
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Now, the definition of complete pair clearly induces another relation on the causal set, but
this time between acausal subsets of C. If an acausal subset A is a complete future of the
acausal subset B and B is a complete past of A we write A � B to indicate they form a
complete pair. In this way we construct an induced poset of acausal sets. It is in this poset
that we will define Hilbert spaces, formulating the framework of quantum causal histories :

1. To each acausal set A ∈ C we associate a Hilbert space HA. Given that all the
elements in A are unrelated they can be taken as isolated systems. We demand
HA =

⊗
x∈AHx.

2. Information must be conserved by construction between each complete pair, so to
each complete pair of acausal sets B � A we associate a unitary evolution operator
UA,B : HA → HB. We must demand that dim(HA) =dim(HB).

3. Transitivity implies that, if B � A and C � B, we must have UA,C = UB,C ◦ UA,B.
Finally, there is a priori no good reason to why we should consider the Hilbert spaces

to be associated to vertices and operators to edges and not vice-versa. Indeed, if we want
vertices of the causal set to be understood as space-time events, then assigning the Hilbert
spaces to the edges of the graph and operators to the vertices would be more in-line with
the physical prescriptions we have been supporting in this work. Interpreting each node
as a spacetime event, hypothetically not defined as a 0-dimensional object but rather as a
representation of an elementary spacetime region, the edges of the partial ordering adjacent
to that vertex have then a natural interpretation in terms of the boundary of that region.
Thus we make contact with the GBF framework if we assign quantum states to the edges
of the poset, rather than to the vertices, and this is the approach we will take in what
follows. This prescription has the added benefit of making it considerably easier to assign
operators to the causal set, as it is immediate to see that the set of incoming edges at a
vertex and the set of outgoing ones already constitutes a complete pair of acausal sets, so
evolution operators can indiscriminately be assigned to every vertex in the set. We thus
modify the definition of a QCH as follows:

1. To each edge e in the graph of C we associate a Hilbert space He.

2. Information must be conserved between every complete pair, so to each element
x ∈ C we associate an operator Ue,e′ :

⊗
inc.He →

⊗
outg.He′ .

3. Transitivity implies that the vertex operators can be composed.

3.2 A consistency condition from causality

In this section we discuss a consistency condition arising from the interplay between quan-
tum mechanics and a spacetime with time-like loops. This condition was proposed initially
by Deutsch in [41], and implemented to some extent on the framework of quantum causal
histories in [42]. Here we attempt to expand on this previous work.
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Figure 3.2: A simple QpCH with a causality loop and two vertex operators.

3.2.1 Including causal loops in QCH

Since QCHs are defined over a causal set, causal loops are not immediately described by
the framework. Indeed, one of the properties of the relation associated to causal sets, as
discussed above, is the one of antisymmetry, which prohibits such structures. Given that
many approaches to quantum gravity (and indeed even classical gravity) naturally allow
closed time-like loops, one may try to describe them in this framework by relaxing the
demand for that property. To this end, we define a pseudo-causal set, for the lack of a
better name, by

• A set C together with a binary relation � between the elements, satisfying

– Reflexivity: a � a

– Transitivity: a � b ∧ b � c⇒ a � c

– Local finiteness: ∀a, c ∈ C, |{b ∈ C|a � b � c}| <∞

(a relation that satisfies the first two proprieties is called a preordering, and a set
together with a relation satisfying the above three is called a chronal set.)

Just as before, any pseudo-causal set can be denoted by a directed graph, but this time
not necessarily acyclic, since any preordered set can be described by such a graph. To
the relation of the set we call a pseudo-causal relation, and the definitions of causal future
and past carry over to the ones of pseudo-causal future and past. We endow now this
pseudo-causal set with the structure of a quantum history by assigning Hilbert spaces to
the edges and operators to the vertices, as above, generating a quantum pseudo-causal
history (QpCH). An example of a QpCH with a causal loop is given by Figure 3.2.

3.2.2 The Deutsch condition

A very simple consistency condition for the application of quantum mechanics in the pres-
ence of causal loops was proposed early by Deutsch. Here we review the argument. Consider
the setting of Figure 3.3, that is, a system initially described by some Hilbert space HA

propagating along a flat 1 + 1 spacetime where the dashed lines have been identified. This
particular type of spacetime goes by the name of Deutsch-Politzer spacetime, having been
studied in [43, 41], and it roughly corresponds to a Minkowski spacetime with a handle on
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Figure 3.3: Politzer spacetime with a propagating particle. The system interacts with an
older version of itself in some finite region, and this interaction is described by U .

top. At sufficiently early times, the particle is described by a state in one Hilbert space
HA, and we assume for simplicity that this state is pure, with density operator ρA. After
some time there will be two copies of the particle, each one having different proper times,
and we describe the states of the older particle with HB, such that the whole system
between the line segments is described by HA ⊗ HB. In the region where the trajecto-
ries of both particles intersect we expect an interaction described by a unitary operator
U : HA ⊗ HB → HA ⊗ HB. Denoting the initial state in HB by ρB (which might be, in
general, mixed), the final state after the interaction will be U(ρA ⊗ ρB)U †. The partial
trace over HA of this state must be the state in HB after the interaction, but because of
the structure of the spacetime we are considering this state must also be ρB. We then have
the consistency condition

TrA[U(ρA ⊗ ρB)U †] = ρB , (3.2)

implying that the states of the system inside the causal loop are not independent of the
ones outside.

This system has a very natural formulation in terms of a QpCH. Indeed, it is described
succinctly by the history of Figure 3.2, where the left vertex is assigned the U operator
and the right vertex is just the identity. To extract more information from this condition,
we follow [42] in studying equation (3.2) in components. Assuming the Hilbert spaces in
question are finite-dimensional of dimension d, a basis for the Hilbert spaces can be given
in terms of SU(d) generators σi and the identity matrix σ0. A general density matrix is
then expanded as ρ = 1

d
[σ0 + αiσ

i] := 1
d
αµσ

µ. To consider a more general case, we require
only of the operator U to be a completely positive map, since these are the most general
maps one can consider such that a density matrix is mapped to a density matrix. We do
not demand that the map is trace-preserving. Using the well-known Kraus decomposition
of completely positive maps, we can write

U : HA ⊗HB → HA ⊗HB

U(ρ) =
∑

n

KnρK
†
n ,

∑

n

KnK
†
n ≤ 1 (3.3)

where each Kn is a homomorphism Kn : HA ⊗ HB → HA ⊗ HB, usually called a Kraus
operator. Denoting the action of Kn by Knσ

α
A ⊗ σβBK†n = (sn)αβµνσ

µ
A ⊗ σνB, equation (3.2)
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then reads

1

d
[βµσ

µ
B] =

∑

n

TrA

[(
ααββ(sn)αβµν

) σµA ⊗ σνB
d2

]

=
δµ0σ

ν
B

d

∑

n

[
(sn)00

µν + αi(sn)i0µν + βi(sn)0i
µν + αiβj(sn)ijµν

]

=
1

d

∑

n

[
αµβν(sn)µν00σ

0
B + αµβν(sn)µν0i σ

i
B

]
,

and from orthogonality of the generators we must have that each multiplicative factor
on the left equals the corresponding one on the right. Using σiσ

i = 0 we have that
Tr
[
ααββ(sn)αβµνσ

µ
Aσ

ν
B

]
= αµβν(sn)µν00 , so the previous equation implies the following system:

{
Tr [U(ρ)] = 1

βj

[
δji − s0j

0i − αlslj0i
]

= s00
0i + αjs

j0
0i ,

(3.4)

where we defined sαβµν =
∑

n(sn)αβµν . Note that the existence of a causal loop constrains the
operator to be trace-preserving.

Now, as noted in [42], this last equation can be used to derive more information about
the form of the operator U . Indeed, representing by ρ′A the state of the system at sufficiently
large times, we can analogously write

ρ′A = TrB[U(ρA ⊗ ρB)U †] , (3.5)

which in components reads

ρ′A =
1

n
[s00
µ0 + αis

i0
µ0 + βis

0i
µ0 + αiβjs

ij
µ0]σµA . (3.6)

The second equation (3.4) is in general a linear one constraining βi to be a rational function
of αi, but this implies from equation (3.6) that the final state of the system is given by a
non-linear function of its initial state. If we insist on upholding the principle of linearity
of quantum mechanics on both the causality-respecting region and the causal-loop one,
we must demand that the β terms in equation (3.6) vanish, as must so to the α terms in
equation (3.4). That is, we must assume s0i

l0 = sijl0 = slj0i = sj00i = 0. This in turn implies
that the only non-zero components of s will be the s0ν

0µ and sν0
µ0, meaning that the operator

U must decouple into two, U = A⊗B. Furthermore, because of the structure of the causal
loop we must clearly have B = 1HB , so our result is that the causal structure and quantum
mechanical linearity demand from the vertex operator to have the factorized form

U = A⊗ 1HB . (3.7)
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3.2.3 Generalized Deutsch condition on cycles

We would now like to generalize the argument of the previous section to an arbitrary
cycle, where the arrows do not all have the same orientation, with an arbitrary number
of vertices. Before we tackle this problem it is crucial to note that, from the identity
V ⊗ W ∗ ' Hom(V,W ), and using the associativity of the tensor product, we have the
natural correspondence

V ∗ ⊗W ∗ ⊗ U ' Hom(U, V ⊗W ) ' Hom(U ⊗W ∗, V ) . (3.8)

As a consequence, each operator Vi induces another operator Ṽi by dualizing some chosen
vector spaces. As an example, from the two maps

V1 : Ha → Hb ⊗Hc ⊗Hd

V2 : Hc ⊗Hd → C
(3.9)

we may construct in a canonical way the operators

Ṽ1 : H∗d → Hb ⊗Hc ⊗H∗a
Ṽ2 : Hc → H∗d .

(3.10)

The first question to ask is what the physical role of this construction is. If a physical system
described by the original operators is perfectly equivalent to a physical system described by
the induced ones, then the causal relations in a QpCH contribute nothing to the eventual
information one might extract from it, and we may freely invert the edge directions where
necessary, considering the appropriate dual spaces and induced operators. Here we argue
however that the two situations do indeed correspond to different formulations of the
problem, both from a conceptual viewpoint and from a physical one.

Figure 3.4: Three possible histories with different assignments of edge orientations. The
grey blob is meant to represent an arbitrary cyclic structure in the interior of the outside
cycle.

Consider then three QpCHs composed of an arbitrary exterior cycle with external edges
at only one of the vertices of that cycle, represented in Figure 3.4. The exterior cycle is
allowed to contain interior cycles, represented by a grey blob. To edges that only connect
to the cycle at one of its ends we will call acyclic. The physical situation described by the
leftmost history is one of a state in the arbitrary past interacting at some point with a
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cycle and then evolving to an arbitrary future. We have therefore a notion of a transition
from a state into another, and the situation is reminiscent of standard quantum mechanics
and evolution between time hyper-surfaces. The two remaining histories of that figure,
however, tell another story: there the states live at either an arbitrary past or an arbitrary
future. In the GBF framework these histories correspond to the same physical picture of
states defined on some spacetime boundary, being indeed related by a simple hermitian
conjugation of the relevant vertex, physically corresponding to a time inversion. Of course,
since all the vertices are connected, consistency demands that the conjugation of a ver-
tex must be followed by conjugation of every other vertex, meaning that a history with
only asymptotic incoming edges is equivalent under time reversal to a history with only
asymptotic outgoing edges, both characterized by the same amplitude map (eventually up
to complex conjugation) and thus containing the same physical information.

From the preceding discussion it follows that we expect that the dualization procedure
on the operators, corresponding to an inversion of the edge directions of the history, does
necessarily change the physical system if applied to the acyclic edges. However, since,
at least for histories where a transition interpretation is available, the closed subgraph
corresponds to a transition operator, we may freely invert the edges on that subgraph,
dualizing the operators, because this procedure will not change how the operator acts on
the acyclic states. Moreover, it is clear now that the generalization of the condition of the
last section must be constructed on histories with transitioning acyclic edges, because only
there may we demand linearity on the evolution of states.

Let us then consider an arbitrary cycle, and focus on a vertex with transitioning acyclic
edges. No matter the valency of the vertex (as long as it is larger than 4), by redefining
the edge Hilbert spaces as tensor products of edges, and by inverting the directions of the
edges inside the cycle, we can always take this particular vertex to the form of figure 3.5.

Figure 3.5: A vertex with transitioning edges inside an arbitrary cycle.

We will denote states outside of the causality cycle that are outgoing and incoming by
an over-bar ρ̄(+), ρ̄(−), respectively. Following the same reasoning as above, the out state
is given by

ρ̄
(+)
2 = Tr4

[
U
(
ρ̄

(−)
1 ⊗ ρ3

)
U †
]
, (3.11)

so it depends on the states defined in both H1 and H3. Because of the cycle structure
of the diagram, the states in H3 must satisfy a consistency condition similar to the one
discussed in the previous section. Indeed, the state in H3 can be evolved at U , and taking
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appropriate traces the resulting states can also be evolved inside the cycle back to the
space H3. This will constrain the state in H3 to be of the form

ρ3 = f(ρ3 ⊗ {ρ̄(−)})⇒ ρ3 = f ′n.l.({ρ̄(−)}) , (3.12)

where f is a linear map and {ρ̄(−)} denotes all the incoming states outside the cycle.
Consequently, the state will have a non-linear dependence f ′n.l. on all the exterior incoming
states. Equation (3.11) determines that the outgoing state is a linear function of both the
incoming state in H1 and the cycle state ρ3. But this implies then, because of equation
(3.12), that there is a non-linear mapping

ρ̄
(+)
2 = gn.l.(ρ̄

(−)
1 , {ρ̄(−)}) . (3.13)

Imposition of linearity at the transition from H1 to H2 will thus demand that the
non-linear dependence on the second argument is removed, i.e. that the operator U must
decouple into a tensor product U = A⊗B, where A acts exclusively on the external spaces
and B acts on the cycle. Unlike the previous simple situation, however, B will not be an
identity map, but rather a complicated operator that directly depends on the structure of
the cycle.

Hence we conclude the following: for a QpCH with completely positive maps at the
vertices, consistency between causality and linear evolution demands that each external
vertex of a cycle must decouple into two maps; one acting on spaces outside the cycle, and
one acting on the inside spaces.

3.3 Spin-foams as quantum causal histories

From the preceding discussion it should be clear that the framework of quantum causal
histories shares a couple of key basic structures with the spin-foam approach to gravity.
In this section we focus on studying to which extent a correspondence between the two
frameworks can be established.

3.3.1 Transition amplitudes

One can synthetically describe the spin-foam models discussed in Chapter 2 as a method to
assign probability amplitudes to boundary states of spacetime regions. Quite generally, if
a history of spacetime is described by a spin-foam F = (∆∗, ρ, ι), then the state associated
to the boundary Σ of a region R has a probability amplitude

ρR(∂F |R) =
∑

Λf→(F∩R∗)
Λe→(E∩R∗)

∣∣
∂FR


 ∏

f∈(F∩R∗)
Wf (Λf ,Λe)




 ∏

e∈(E∩R∗)
We(Λf ,Λe)




 ∏

v∈(V∩R∗)
Wv(Λf ,Λe)


 ,

(3.14)
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where the notation under the sum indicates a labeling of faces and a labeling of edges
by some representation-theoretic data which must agree with the labeling of the boundary
state (if R is a minimal spin-foam region the sum disappears, as there is no bulk information
to sum-over). For the models discussed in the Chapter 2, characterized by a constrained
BF -type theory in n dimensions with symmetry groupG and boundary space with SU(2) ⊆
G gauge, the amplitude map is given by

ρR(∂F |R) =
∑

Λ̂G→(F∩R∗)|∂FR


 ∏

f∈(F∩R∗)
dim(ρf )





 ∏

v∈(V∩R∗)

∑∫

χ1 ... χn+1

( {(
n+ 1

2

)
j

}

(χ,f)

n+1∏

i=1

C(ιi)
a1 ... an

Γa1b1 ...ΓanbnC
(χk)
b1 ... bn

)
 .

(3.15)

Here Λ̂G → (F ∩R∗)|∂FR denotes a labeling of faces by a constrained choice of irreducible
representations of G which agree with the boundary data, the sum/integral is over inter-
twiner labels of G, the object in the curly brackets is an nj-symbol of G, C(χ) denotes a
labeled G intertwiner and C(ι) denotes an SU(2) one. Note that the intertwiner labels of
C(ι) are not summed over, but rather determined by the boundary state. The maps Γ are
the embeddings (or their hermitian conjugate, where appropriate)

Γ† : L2(SU(2))→ L2(G) (3.16)

mapping SU(2) states to constrained G ones.
In establishing a correspondence between spin-foam models and quantum causal his-

tories, one must unavoidably encode the above amplitudes in a Hilbert space operator
formalism. In accordance with the GBF discussion of Section 2.3, we should expect the
model’s spin-foam amplitudes to be recovered as transition amplitudes of an operator for
situations where it is reasonable to consider some states as incoming and some as outgoing.
Since there is a notion of a minimal region of spin-foam models, from a collection of which
the whole model is obtained, we further would like to associate the tentative operator to
each such region, such that schematically we have the following

〈in|h|out〉 ∼ ρR(∂F |R) .

While there is no notion of incoming and outgoing states in most spin-foam models (there
is rather a probabilistic notion of a “state of affairs”), we can still reasonably define initial
and final states in some appropriate Hilbert spaces. This we do in the following.

3.3.2 The edge Hilbert spaces

We shall focus first on one fundamental element of the spin-foam framework, i.e. one n-
simplex R of the considered triangulation ∆. As was argued in subsection 2.3.3, the dual
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2-complex R∗ ⊂ ∆∗ associated to each simplex induces a closed graph on the boundary,
and hence, for the class of spin-foams at hand, it induces a boundary Hilbert space

H∂R∗ =
⊕

Λ̂G→F|R∗

⊗

e∈E
InvSU(2)


 ⊗

f∈S(e)

Hf

⊗

f∈T (e)

H∗f


 , (3.17)

where Λ̂G denotes the set of constrained unitary irreducible representations of the larger
symmetry group G and the action of SU(2) is through the bi-regular representation. This
Hilbert space is exactly the one defined in equation (2.8). However, in order to have a
notion of transition, i.e. a concept of incoming states being mapped to outgoing ones,
one would like to think not in terms of states associated to the whole boundary of an
n-simplex, but rather in terms of states at each face of that simplex. This way we can
define Hilbert spaces He for each edge e ∈ E ⊂ R∗, corresponding to each (n− 1)-simplex
of the fundamental element, such that a choice of one state in each edge corresponds to a
choice of a state in H∂R∗

1. One can then choose from the n spaces a subset of incoming
spaces and a subset of outgoing ones.

Looking back to subsection 2.3.3, and in particular to Figure 2.7, it is clear that the dual
complex will induce, at each face of the simplex, a graph with one n-valent vertex connected
to n 1-valent ones. The full graph on the boundary can then be obtained by gluing the
open edges of each of these graphs along the boundary. We are therefore interested in
objects that look like spin-networks with some 1-valent vertices, but where intertwiners
are not assigned to any of those vertices, so that the open edges can be glued together. To
these objects we will refer as open spin-networks. The prescription for such a gluing, and
the definition of such one-vertex states, was already discussed by Oriti in [44], and here
we formulate the construction in the spin basis. Assuming the validity of the Peter-Weyl
theorem for G, for each edge e ∈ E ⊂ R∗ we define the spaces

H̃e = L2(Gn)

'
⊕

Λ̂G→F|R∗




 ⊗

f∈S(e)

Hf

⊗

f∈T (e)

H∗f


⊗


 ⊗

f∈S(e)

Hf

⊗

f∈T (e)

H∗f



∗
 , (3.18)

as the non-gauge-invariant Hilbert space of a graph composed of one n-valent vertex and
n 1-valent vertices. Note that this is in complete agreement with equation (2.6). To
recover the gauge-invariant space one would now quotient out the action of two copies of
SU(2) ⊂ G. Instead, in order to have open legs on the networks, we define the “half” action

L : ge 7→
⊕

Λ̂G→F|R∗




 ⊗

f∈S(e)

ρf (ge)
⊗

f∈T (e)

ρf∗(ge)


⊗ 1


 , (3.19)

1Crucially, note that the total boundary space cannot be written simply as the tensor product of spaces
of intertwiners for each edge, because of the first direct sum in the definition of H∂R∗ .
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which can be thought of as half a gauge transformation of a parallel transport, acting only
in one of the ends of its curve. We then obtain the edge Hilbert space as the quotient

He ' H̃e/ ∼
|j1α1β1, ... , jnαnβn〉 ∼ L(ge) |j1α1β1, ... , jnαnβn〉 ,∀ge ∈ SU(2) ⊂ G .

(3.20)

In other words, we have the characterization

He =
⊕

Λ̂G→F|R∗


InvSU(2)


 ⊗

f∈S(e)

Hf

⊗

f∈T (e)

H∗f


⊗


 ⊗

f∈S(e)

Hf

⊗

f∈T (e)

H∗f



∗


'
⊕

Λ̂G→F|R∗


IntΓ

G


 ⊗

f∈S(e)

Hf ,
⊗

f∈T (e)

Hf


⊗


 ⊗

f∈S(e)

Hf

⊗

f∈T (e)

H∗f



∗
 , (3.21)

and IntΓ
G denotes the space of G intertwiners coming from SU(2) ones through the embed-

ding map Γ†. A convenient label for the basis states is the ket |j1m1, ... , jnmn; ι〉, where ι
denotes an SU(2) intertwiner, j labels the constrained representations of G and m is the
magnetic index of the second factor in the above equation.

Now we discuss the gluing procedure. Every closed spin-network state can be obtained
by a linear combination of edge states through

|j(1)
1 ... j(1)

n , ι1; ... ; j
(n+1)
1 ... j(n+1)

n , ιn+1〉 =
∑

{m}1...{m}n+1

|{j,m}1, ι1〉 ... |{j,m}n+1, ιn+1〉 {δm} ,

where {δm} denotes a product of Kronecker deltas ensuring coherence between the edges
that are to be glued. As a practical example of this procedure, consider two open spin-
networks with a 3-valent vertex that are coherent, i.e. they have the same edge represen-
tations and consistent orientations, as in Figure 3.6.

Figure 3.6: Two coherent open spin-networks labeled by intertwiners at the vertices, rep-
resentations at the edges, and magnetic indices at the open vertices.

Each of these spin-networks can be represented as a ket or as an SU(2) function as

|j∗1m1, j
∗
2m2, j3m3; ι〉 → am3m2m1(g1, g2, g3) = ιa3a2a1D

(j3)
a3m3

(g3)D∗(j2)
a2m2

(g2)D∗(j1)
a1m1

(g1)

|j1l1, j2l2, j
∗
3 l3;κ〉 → bl1l2l3(h1, h2, h3) = κb1b2b3D

(j1)
b1l1

(h1)D
(j2)
b2l2

(h2)D
∗(j3)
b3l3

(h3) ,
(3.22)
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and the closed spin-network state resulting from the gluing is given by
∑

{m}{l}
|j∗1m1, j

∗
2m2, j3m3; ι〉 |j1l1, j2l2, j

∗
3 l3;κ〉 δm1l1δm2l2δm3l3

→ ιa3a2a1D
(j3)
a3m3

(g3)D∗(j2)
a2m2

(g2)D∗(j1)
a1m1

(g1)κb1b2b3D
(j1)
b1m1

(h1)D
(j2)
b2m2

(h2)D
∗(j3)
b3m3

(h3)

= ιa3a2a1D
(j3)
a3b3

(g3h
−1
3 )D

(j2)
b2a2

(h2g
−1
2 )D

(j1)
b1a1

(h1g
−1
1 )κb1b2b3 ,

which is the gauge-invariant function we expect from a state in H∂R∗ .

3.3.3 The quantum causal history of a spin-foam

The necessary ingredients to establish a possible correspondence between a given spin-
foam model and the quantum causal histories framework have now been laid down. First
of all, the framework of QCH must be relaxed to that of QpCH, defined in subsection
3.2.1, to accommodate for causal loops. The correspondence is then established as follows:
the pseudo-causal set C of the QpCH will be composed of every vertex v ∈ ∆∗ of the
dual triangulation, as the “skeleton” of the spin-foam, and an ordering of C will be defined
through the oriented edges e ∈ ∆∗ in the natural way, i.e. v1 ∈ S(e)∧v2 ∈ T (e)⇒ v2 � v1.
The set C is then upgraded to a QpCH by assigning to each element of the set what we
will call a history operator, defined as a map

h :
⊗

e∈T (v)

He →
⊗

e∈S(v)

He

〈in|h|out〉 = ρR(∂F |R) , (3.23)

where R denotes a minimal spin-foam region (i.e. an n-simplex), such that to each edge
in the graph of C there corresponds the Hilbert space He of equation (3.21). We demand
moreover from whichever particular spin-foam model is under consideration:

1. That each (n− 1)-simplex of the model be space-like;

2. That the history operator be unitary;

3. That the history operator satisfy, at least weakly, the Deutsch condition on cycles
(subsection 3.2.3).

Note that these three conditions are necessary for a consistent notion of causality for spin-
foams. In order to understand the orientations on the edges of ∆∗ as a causal ordering
we must reasonably demand that those edges are associated with a time direction. Under
this identification, unitarity follows from requiring a well-behaved quantum theory2. If the
edges are understood as causal relations, and since the spin-foams naturally incorporate a
large number of causal loops through the faces in the dual triangulation, we must demand



60 3. Causality Considerations

Figure 3.7: A QCH of riemannian 3d BF theory, obtained by gluing two tetrahedra to-
gether, and the matrix coefficients of the resulting composite operator.

consistency with quantum mechanics through the Deutsch condition (under the require-
ment of linear evolution). We would like to explicitly point out that in understanding the
orientations on the edges of a spin-foam as a causal ordering we are making the key phys-
ical assumption that such a causal ordering can be implemented at the quantum level. In
our view, however, it would also seem reasonable to argue that causality could be expected
to be solely an effective concept: if, as it is hoped, one could extract an effective metric
from a quantum state, this metric would already by itself encode an effective causal struc-
ture. Since the problem of the continuum limit for spin-foam theories is still unresolved
we proceed with our identification, in the hope that a specification at the quantum level of
a causal structure might help in restricting the possible effective configurations associated
to the quantum theory.

Finally, note that generic spin-foam history operators are not expected to conform to
the Deutsch condition strongly, the reason being that the structure of the operator very
much encodes the combinatorial nature of the spin-foam construction. As we will show
below in the context of the models discussed in this work, the history operator must ensure
that the states assigned to each (n − 1)-simplex on the boundary are coherent with one-
another, such that a spin-network on the boundary is properly defined. Consequently,
the history operator will not in general reduce to a tensor product of operators as the
condition demands. One would benefit from constructing an appropriate notion of “weak”
Deutsch condition which could be demanded from spin-foam models, for example through
the imposition on a semi-classical approximation. Alternatively one could also forfeit the
requirement of linearity in state transitions, allowing for a more complex behavior of the
dynamics of quantum states. Nonlinear quantum models have been extensively used in
many areas in physics, even if only in the context of effective models, so one has to consider
the possibility that a quantum mechanical formulation of gravity might demand such an
uncommon behavior.

2Of course, one might consider more general ways of implementing unitarity, for example as some
effective behavior when a sum over triangulations is considered.
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3.4 The history operator for EPRL-type models

Now we focus on explicitly describing and studying the history operator for the models
discussed in Chapter 2, namely the three-dimensional constrained BF theory and the
four-dimensional EPRL model.

3.4.1 Explicit construction

To start with, note from equation (3.21) that the boundary Hilbert space of these models
(3.17) cannot simply be written as the product of edge Hilbert spaces He, as indeed we have
artificially enlarged the degrees of freedom. The states of the boundary Hilbert space will
only correspond to those products of edge states that are coherent with one-another, i.e.
gluings of one-vertex graphs that share leg representations and orientations. The vertex
operator we want to define must therefore ensure this coherence, which ultimately is a
consequence of the combinatorial structure of the underlying triangulation one is working
with, by assigning vanishing amplitudes to non-agreeing states. We therefore define for
each spin-foam vertex, given some choice of edge and face orientations, the family of history
operators

h :
⊗

e∈T (v)

He →
⊗

e∈S(v)

He , (3.24)

associated to each simplex of ∆, and therefore each vertex of ∆∗. The matrix coefficients
of these operators, independently of the domain-codomain structure3, are chosen to be

h{j,m}1,ι1; ... {j,m}n+1,ιn+1

=
∑∫

χ1 ... χn+1

( {(
n+ 1

2

)
j

}

(χ,j)

n+1∏

i=1

C(ιi;{j}i)
a1 ... an

Γa1b1 ...ΓanbnC
(χi;{j}i)
b1 ... bn

)

·
n(n+1)

2∏

l=1

δ(j∈{j}i,j′∈{j}k 6=i)
dim(j)

δ(m∈{m}i,m′∈{m}k 6=i) , (3.25)

where each δ in the product is between pairs of representations associated to different edges.
Note that the deltas constrain configurations to have a non-vanishing amplitude only when
the choice of states at each face of the simplex actually corresponds to a spin-network on
the boundary. In order to fully recover the spin-foam amplitude, however, one must still
sum over the magnetic indices; because there is a larger space of states at the boundary,
we must identify a special subset of states at each He, which we call boundary-like states,
given by a sum over the magnetic label

He 3 |{j}, ι〉b.l. =
∑

{m}
|{j,m}, ι〉 , (3.26)

3Crucially, the coefficients must be the same for every choice of domain-codomain structure because
the spin-foam amplitudes for the models discussed in this work are invariant under a change of edge
orientation, as argued in the end of subsection 2.4.1.
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such that the spin-foam amplitudes correspond to transition amplitudes between such
states at boundary edges. This sum operates the gluing of the states of He into a spin-
network state on the full boundary.

Having a larger set of states at the boundary of each n-simplex is also useful to generate
spin-foam face amplitudes by simple composition of the history operators. Composition
corresponds in coefficients to matrix multiplication, which includes a sum over the basis
that defines the components, and therefore contributes from the Kronecker deltas a dimen-
sion factor. As an example, consider the 3d BF history operator h of equation (3.29) and
the following composition:

(h ◦ h ◦ h ◦ h){j} ... =
∑

τ1τ2τ3τ4

∑

r

l3

l1
l2

l′1 l′2 l′3
j1

j3

j2

j′2
j′3

r

j1
j2
j3

j′1 j
′
2 j

′
3

k3

k1
k2

k′1 k
′
2 k

′
3

i1
i2
i3

i′1 i′2 i′3

l′1

r

i2

l′2
l1

l3

i1

i3

i2
l′2

r

i′3

r

k′1

k2
k′2

k1

k3

r

=
∑

λ→F


 ∏

f∈(F∩R∗)
dim(ρf )




 ∏

v∈(V∩R∗)
6j δf1f ′1 ...δf6f ′6


 . (3.27)

This particular choice induces a closed circle diagram labeled by the representation r,
corresponding to a face amplitude dim(r) = 2r + 1. The Kronecker deltas insure the
boundary states are induced from representations on each face f ∈ F ⊂ ∆∗, so that a
choice of a state in one face of a tetrahedron constrains the possible choices of states in
every neighboring face. In this way the usual face amplitudes are recovered.

Lastly we show explicit examples of the construction we have been presenting, by
specifying to both Riemannian BF theory in 3d (2.36) and the EPRL model 2.4.2:

• Riemannian 3d BF model

We take G = SU(2) and no constraints on the states. Choose for concreteness the
domain-codomain structure

h : He1 ⊗He2 → He3 ⊗He4 , (3.28)

where we have not written the intertwiner labels in the states, because they are in this
case uniquely defined. Omitting the diagrammatic normalization of the 6j symbol,
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the line orientations and the dimension terms, the coefficients have the form:

{j,m}4;{j,m}3h{j,m}1;{j,m}2 =
j
(1)
1

j
(1)
2

j
(1)
3

j
(4)
1 j

(4)
2 j

(4)
3

j
(2)
1 j

(2)
2 j

(2)
3

j
(3)
1

j
(3)
2

j
(3)
3

j
(1)
1 j

(3)
1

j
(3)
3j

(1)
3

j
(2)
2

j
(3)
2 (3.29)

=
δ
m

(1)
1 m

(4)
1

j
(1)
1 j

(4)
1

δ
m

(1)
2 m

(3)
3

j
(1)
2 j

(3)
2

δ
m

(1)
3 m

(2)
1

j
(1)
3 j

(2)
1

δ
m

(3)
1 m

(4)
3

j
(3)
1 j

(4)
3

δ
m

(3)
3 m

(2)
3

j
(3)
3 j

(2)
3

δ
m

(4)
2 m

(2)
2

j
(4)
2 j

(2)
2

dim(j
(1)
1 )dim(j

(2)
2 )dim(j

(3)
1 )dim(j

(1)
3 )dim(j

(2)
3 )dim(j

(1)
2 )

{
j

(1)
1 j

(2)
2 j

(3)
1

j
(1)
3 j

(3)
3 j

(3)
2

}
.

A spin-foam amplitude is obtained by selecting physical states in each He,

A({j}1; ... {j}4) =
∑

{m}3{m}4

〈{j,m}3, ι3| 〈{j,m}4, ι4|h
∑

{m}1{m}2

|{j,m}1, ι1〉 |{j,m}2, ι2〉

=
∑

{m}1{m}2{m}3{m}4
{j,m}4;{j,m}3h{j,m}1;{j,m}2

=

{
j

(1)
1 j

(2)
2 j

(3)
1

j
(1)
3 j

(3)
3 j

(3)
2

}
. (3.30)

• EPRL model

We take G = SL(2,C) and demand that λ runs over only the constrained SL(2,C)
representations. We again make a concrete choice for the structure of the operator,

h : He1 ⊗He2 → He3 ⊗He4 ⊗He5 , (3.31)

and once more omit the diagrams’ normalizations and dimension factors. The coef-
ficients should then read:

{j,m}5,ι5;{j,m}4,ι4;{j,m}3,ι3h{j,m}1,ι1;{j,m}2,ι2 =

=

∫ [ 5∏

i=1

dχi∆χi

] j
(1)
1

j
(1)
2

j
(1)
3

j
(1)
4

χ5

χ4

χ3χ2

χ1
ι1

ι2

ι4

ι5
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m
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(1)
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... δ
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(4)
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(3)
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(4)
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(3)
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dim(j
(1)
1 ) ... dim(j

(4)
4 )

∫ [ 5∏

i=1

dχi∆χi

]
{10j}(χ,j)

5∏

i=1

[
C(ιi;{j}i)
a1 ... an

Γa1b1 ...ΓanbnC
(χi;{j}i)
b1 ... bn

]
.

(3.32)

where the the integral over χl refers to the intertwiners of SL(2,C), and ∆χ =
(n2 + p2) for χ = (p, n). Repeated indices in the second square brackets of the
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last line are summed-over, and Cι, Cχ represent SU(2) and SL(2,C) intertwiners,
respectively. Again, the spin-foam amplitude is recovered as a transition amplitude
between physical boundary states.

3.4.2 An alternative characterization

We can rewrite the components of the history operator 3.25 in a form that more explicitly
reveals the underlying spin-foam structure. Consider first the diagrammatic Schur identity
of section B.2,

∫
dg

g

g
=

δj,j′

dim(j)

j

j
′

, (3.33)

where the labeled lines indicate j-representation matrices of g. Then, focusing first on an
history operator in 3 dimensions without fusion coefficients, we have

∑∫

χi

χ1

χ2

χ3

χ4

=
∑∫

χi

∫

G

da ... df

a b c

c

d

e

f b e

a

d

f

χ1
χ2

χ3

χ4 , (3.34)

where the diagram on the right stands for representation matrices contracted with G in-
tertwiners. The right-hand diagram automatically produces the dimension factors that we
omitted on the left-hand one. Now the inclusion of the fusion coefficients can be made,
which also allows us to hide the sum/integral over intertwiner labels. Representing the
projectors onto the invariant subspace by a solid bar,

=
∑∫

χ

χ , (3.35)

we have the equality

∑∫

χi

χ1

χ2

χ3

χ4

χ1

χ2

χ3

χ4

ι1
ι2

ι3

ι4 =

∫

G

da ... df

a b c

c

d

e

f b e

a

d

f

ι1
ι2

ι3

ι4 . (3.36)
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Explicitly, the general history operator can therefore be written in the following way: define
for each edge the coefficients

E(g1, ... , gn){j},ι; a1, ... an

= C
(ι,{j})
d1 ... dn

Γd1c1 ...Γdncn

[∫

G

dhDj1
c1b1

(h)...Djn
cnbn

(h)

]
Dj1
b1a1

(g1)...Djn
bnan

(gn) , (3.37)

such that, with respect to these, the history operator reads

h{j,m}1;ι1 ... {j,m}n+1;ιn+1 =

∫

G



n(n+1)

2∏

l=1

dgl



n+1∏

i=1

E(σi){j},ι; a1, ... an (3.38)

where σi are non-repeating choices of subsets with n elements from the set {gi}i=1,...,n(n+1)/2

such that each element of the larger set is chosen only twice. Note that the above dia-
grammatic notion visually encodes the notion that the spin-foam amplitude is obtained by
summing over the magnetic indices, as one can find the amplitude by simply joining the
black lines that are labeled by the same letter.

3.4.3 The matter of unitarity

The mathematical theory of infinite-dimensional Hilbert spaces and their operators is be-
yond the scope of this work, but some comments can still be made regarding the nature of
the history operator defined in equations (3.24) and (3.25), and their respective spaces of
definition (3.21).

First, we note that it is a well-known result from the theory of Lp spaces that L2(G) is
a separable Hilbert space if and only if G is second-countable and locally compact (see e.g.
[45]). Since the groups we are working with (SL(2,C) for the 4-dimensional model, and
SU(2) for the 3-dimensional toy-model) satisfy these two conditions, and in equation (3.20)
we quotient out a closed subspace, the resulting edge Hilbert space He is still separable4.
Since all infinite-dimensional separable Hilbert spaces are isomorphic, this implies that the
domain and codomain of definition of the history operator in equation (3.24) are isomorphic
to each other. Thus, there being a different number of tensor product factors in the domain
and codomain of the operator is not an obstruction per se to unitarity. It does turn out,
however, that for the class of models under discussion the history operator cannot be
unitary.

To see why it is so, consider for simplicity two history operators of the 3-dimensional
BF model with the domain-codomain structures

h3,1 : He ⊗He ⊗He → He

h2,2 : He ⊗He → He ⊗He .
(3.39)

4Many thanks to Maximilian H. Ruep for both pointing this out to me and helping with the following
argument.
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Now we assume h3,1 is unitary, and hence it must map an orthonormal basis to an or-
thonormal basis. Defining c1,2,3 to be the norm of the image of a basis state under h3,1,

c1,2,3 := ||h1,3 |{j,m}1, ι1〉 |{j,m}2, ι2〉 |{j,m}3, ι3〉 ||2

=
∑

{j,m}4,ι4

| 〈{j,m}4, ι4|h1,3 |{j,m}1, ι1〉 |{j,m}2, ι2〉 |{j,m}3, ι3〉 |2 = 1 ,

we have that the norm of the image of h2,2 satisfies

||h2,2 |{j,m}1, ι1〉 |{j,m}2, ι2〉 ||2 =
∑

{j,m}3,ι3
{j,m}4,ι4

| 〈{j,m}3, ι3| 〈{j,m}4, ι4|h2,2 |{j,m}1, ι1〉 |{j,m}2, ι2〉 |2

=
∑

{j,m}3,ι3
{j,m}4,ι4

| 〈{j,m}4, ι4|h1,3 |{j,m}1, ι1〉 |{j,m}2, ι2〉 |{j,m}3, ι3〉 |2

=
∑

{j,m}3,ι3

c1,2,3 ∼ ∞ .

We thus see that h2,2 cannot be unitary. But then neither can h1,3, because

||h†1,3 |{j,m}4, ι4〉 ||2 =
∑

{j,m}1,2,3,ι1,2,3

| 〈{j,m}1, ι1| 〈{j,m}2, ι2| 〈{j,m}3, ι3|h†1,3 |{j,m}4, ι4〉 |2

=
∑

{j,m}1,2,3,ι1,2,3

| 〈{j,m}4, ι4|h1,3 |{j,m}1, ι1〉 |{j,m}2, ι2〉 |{j,m}3, ι3〉 |2

=
∑

{j,m}2,ι2

||h2,2 |{j,m}1, ι1〉 |{j,m}2, ι2〉 ||2 ∼ ∞ ,

so we arrive at a contradiction. The same argument can be applied to any operator in the
family.

Note that in the argument we did not need to use the explicit form of the coefficients
of the history operator; only that those coefficients should be the same independently of
the underlying domain-codomain structure of the operator. In turn, this is a consequence
of the fact that the spin-foam amplitude of the EPRL model (and related ones) does not
depend on the orientations of the dual-complex which induce that structure.

Given this behavior of the history operator, the first relevant remark we can make is that
the spin-foam models of the type we have been considering in this work, that is those which
arise from an unmodified BF -type theory with the imposition of simplicity constraints (as
the EPRL model), do not admit a QpCH formulation. Indeed, we have just proven that
the history operator for these models cannot be unitary, so there is no notion of unitary
evolution to be extracted from them. In hindsight, this could be expected: it is a well-
known fact that the hamiltonian for general relativity vanishes identically, being composed
purely of constraints. Recall from equation (2.68) that most spin-foam models are obtained
as a sum-over-histories restricted by a delta function, which is supposed to impose those
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constraints. In this sense the path integral can be thought of as an implementation of a
projector operator on the kinematical space of states, yielding the physical inner product.
Schematically,

∫
dλ

∫

ψ,φ

Dϕei
∫

(λC−πϕ̇) dτ = 〈ψ|φ〉phys. = 〈ψ|P |φ〉kin. =

∫
Dϕe−i

∫
πϕ̇dτδ(C) . (3.40)

where λ is a Lagrange multiplier imposing the constraint C = 0, ϕ represents the fields of
the theory and π their conjugate momenta. The operator P acts as a projector onto the
states satisfying the constraints. Since our history operator is in some sense induced by
such a projector operator, its failure in satisfying unitarity can be justified.

Lastly we would like to note that, while we have ruled out a big class of models from
being unitary, there exist in the literature certain constructions of spin-foam models which,
unlike the ones studied here, propose amplitudes which do depend on the edge orientations
of the dual complex [46, 47] (we note in passing that in [46] that such a dependence is
implemented by restricting the domain of integration of the Lagrange multiplier (3.40)
imposing the constraint). We expect the history operator of such “causal” models to be
better behaved, and hypothesize that, under the requirement of unitarity of the operator,
relevant constraints on the parameters of the theory (specially the fusion coefficients) could
be obtained.



Summary and Outlook

We have explored in this work the spin-foam approach to quantum gravity, and argued
towards its relevancy as a consistent, rigorous and physically well-motivated theory, fur-
thermore implementing the main features of Einstein’s general theory of relativity. The
important conceptual aspects of these models, as the meaning of probability amplitudes
and the role of spin-network states for spacetime, were also discussed. So too were the
mathematical structures we consider to be fundamental in the formulation of these the-
ories. We have also presented a succinct overview of the causal set program and related
constructions, having in mind the objective of establishing a correspondence between spin-
foam models and quantum causal histories.

Regarding the correspondence between the two frameworks, we have shown how a lin-
ear “history” operator can be constructed from spin-foam models, such that the models’
amplitudes can be recovered as the usual transition amplitudes of the operator. We have
moreover investigated the implications of requiring linearity on the evolution of quantum
mechanical states inside causal loops, and derived from them a condition on the evolution
operator characterizing the system. Using these obseervations we have formulated a pre-
scription for establishing the correspondence between a spin-foam model and a quantum
causal history, and we have shown that a large class of spin-foam models found in the liter-
ature do not admit such a correspondence, chiefly because the amplitudes of these models
do not depend on the orientations of the spin-foam.

There remain still some open questions to be addressed in some later time. First of all,
it would be interesting to apply our history operator construction to the causal spin-foam
models found in the literature, as we reasonably expect that the condition of unitary could
further constrain such models. Furthermore, the role of the Deutsch condition on spin-
foams deserves to be investigated, eventually trough the formulation of a weaker version
of the condition, as again we expect this condition to constrain the models. From the
opposing point of view, the idea that spin-foam models do not necessarily need to satisfy a
unitarity condition (which is demanded in quantum mechanics in a very different setting,
where time is a parameter and not a dynamical physical entity) deserves to be considered
and further studied.



Appendix A

Geometry of Gauge Theory

A.1 Connections on Principle Bundles

A great deal of the progress that has been made towards a quantum theory of gravity
hinges on the reformulation of General Relativity in terms of objects that one would find
in any gauge theory. In order to understand such a reformulation, and for completeness,
we discuss here the mathematical setting of gauge theories, i.e. principal bundles, and
how the usual physical fields one studies in such a class of theories arise out of geometric
quantities on these bundles. Most of this section is taken from [48] and [49].

A.1.1 Principal Bundles

We start with the well-known definition of a principal bundle. A smooth bundle P π→ M
with fiber G and local trivializations

φi : π−1(Ui)→ Ui ×G
u 7→ (x, h)

(A.1)

over an open cover {Ui} ofM is a principal G-bundle if it has G as a structure group acting
on the left. Then there is a natural smooth fibre-preserving right action P /G of G on itself,
given by φi(ug) = (x, hg). Note that this definition is independent of the trivialization,
because under some other trivialization φj we have

φ−1
i (x, hg) = φ−1

j (x, fij(hg))

= φ−1
j (x, (fijh)g)

= ug

for fij ∈ G. Notice moreover this action is both transitive (because the right action of G
on itself is transitive) and free (because φi is a homeomorphism).

A useful construction to consider for principal bundles is the one of the vertical tangent
subspace VuP = kerπp∗ , intuitively understood as the space of vectors at u ∈ P that
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are parallel to the fibers. One can then define V P = tu∈PVuP in the obvious way as a
sub-bundle of P . There is a very simple way in which such vectors can be constructed.
Consider the Lie-algebra g of G and the usual exponential map exp : g → G. To every
element X ∈ g we can associate a vector field X#, called the fundamental vector field on P
associated to X: let γXu : t 7→ u exp(tX) be the curve starting at u generated by the right
action, and

X#
u =

d

dt

∣∣∣
t=0
u exp tX

= γXu ∗

(
d

dt

∣∣∣
t=0

)
.

It is easy to check that X# is indeed vertical at every point u, and it turns out [49] that
#u : g→ VuP is in fact a vector space isomorphism.

A.1.2 Connections

We may now define the notions of connection and curvature of a principal fiber bundle,
and these objects will have a direct correspondence with the usual analogous notions for
vector bundles.

As we saw in the previous subsection, there is a unique and well-defined notion of
vertical vectors on the principle bundle, but there is no canonical choice of the complement,
called the horizontal tangent space HuP . A connection on a principle G bundle is then a
unique choice of the smooth complement subspace HuP to VuP [49] such that

(i) TuP = HuP ⊕ VuP, u ∈ P
(ii) HugP = Rg∗HuP, g ∈ G
(ii) HuP depends smoothly on u

(this definition of connection may seem too abstract and rather far from the usual intu-
ition of using the connection to parallel transport vectors along a curve. As we shall see,
however, transporting vectors in a unique manner along a curve is exactly what a choice
of a horizontal space allows for).

It turns out that a systematic choice an horizontal space can be made by prescribing a
connection 1-form, that is, a Lie-algebra-valued 1-form ω ∈ Γ(TP ⊗ g) satisfying

(i) ω(X#) = X, X ∈ g

(ii) R∗gω = Adg−1ω ,

and the horizontal subspace arises as its kernel

HuP := {X ∈ TP |ω(Xu) = 0} . (A.2)

One can check that the horizontal subspace defined in (A.2) satisfies all of the properties
required in the first definition.
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To define the curvature of the connection, we start by defining a differential operator
acting on forms in P . Let φ ∈ Ωr(P ) be such a form, and X1, ..., Xr+1 ∈ TuP . The exterior
covariant derivative D is a map D : Ωr(P )→ Ωr+1(P ) defined by

Dφ(X1, ..., Xr+1) = dφ (hor(X1), , hor(Xr+1)) , (A.3)

where d is the usual exterior derivative on the forms and hor denotes the horizontal com-
ponent of the vector. The curvature 2-form Ω is then simply defined by the action of the
exterior covariant derivative on the connection, i.e.

Ω = Dω ∈ Ω2(P )⊗ g . (A.4)

It turns out [49] (we omit the proof because we consider it to be more lengthy than useful)
that equation (A.4) can be equivalently written as

Ω = dω + ω ∧ ω , (A.5)

where the second term is to be understood as the wedge operation on the matrix com-
ponents being multiplyied, and this equation is commonly called the curvature structural
equation. The exterior covariant derivative also admits a simple formula for a particular
family of forms in P , namely the forms α with values in some vector space V that are
equivariant with respect to a represenation ρ : G→ GL(V ), i.e.

R∗gα = ρ(g)−1α , (A.6)

named tensorial forms of type ρ in the literature. It can be shown [50] that for this class
of forms the exterior covariant derivative can be written as

Dα = dα + ρ∗(ω) ∧ α , (A.7)

where the wedge operator is to be understood as wedging each component in the matrix
multiplication.

A.1.3 Local form of the connection

The connection on a principal bundle P (G,M) can be easily pulled back to the base
manifold, and we will see this determines a choice of a connection on vector bundles related
to it. Let {Ui} be an open covering of M and si : M → P local sections of P . Define the
local connection on each open set Ui to be the pullback Ai = s∗iω of the connection. Note
that it is exactly the local form of the connection Ai ∈ Ω(M)⊗ g that is used in physical
gauge theories. One can show [48] that these local forms satisfy a compatibility condition
in each Ui ∩ Uj 6= ∅, with sj = sitij, tij ∈ G, given by

Aj = t−1
ij Aitij + t−1

ij dtij . (A.8)
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Analogously, for two local sections s1, s2 over U with A1 = s∗1ω, A2 = s∗2ω, and s2(x) =
s1(x)g(x), the local field transforms as

A2 = g−1A1g + g−1 dg (A.9)

Regarding the curvature, the local form is similarly constructed with the pullback by a
local section, F1 = s∗1Ω, and from equation (A.5) one easily sees that it relates to the local
curvature trough

F1 = dA1 + A1 ∧ A1 , (A.10)

with a similar compatibility condition on Ui ∩ Uj 6= ∅,

Fj = t−1
ij Fitij . (A.11)

Finally, from equation (A.9), the right action of G, with s2 = s1g, transforms the local
curvature form by

F2 = g−1F1g . (A.12)

A.1.4 Group of gauge transformations

Given a principal G-bundle P π→ M and a local section s1 : U → P inducing a local
connection form A1 = s∗1ω, recall (A.9) that, under a smooth transformation of the section
s2(x) = s1(x)g(x), the induced local connection 1-form transforms as

A2 = g−1A1g + g−1 dg , (A.13)

with A2 = s∗2ω.
It turns out that such gauge transformations can be seen as bundle isomorphisms of P

that reduce to the identity on the base, i.e. maps of the form

f : P → P

s.t. f(ua) = f(u)a, a ∈ G . (A.14)

Since these maps are fiber-preserving, such a transformation may also be seen as a map

g : P → G

s.t. g(ua) = a−1g(u)a, a ∈ G , (A.15)

and we identify f(u) = ug(u). These can then be used to act on sections s2(x) = s1(x)(g ◦
s1)(x) and induce gauge transformations of the connection as above. Notice that the set of g
maps has a natural group structure which can be associated with the bundle isomorphisms
f , and so one calls the group of such isomorphisms the gauge group G [11].

The gauge group also admits a nice geometrical description in terms of the associated
bundle P×conjG, where we identify [u, g] = [uh, h−1gh]. Notice that there is a multiplication
at the fibers [u, g] · [u, h] = [u, gh], so that the fibers are isomorphic to G. Consider now a
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section ψ : π−1(P ) → P × G. There is a unique f ∈ G s.t. f(ψ(1)(x)) = ψ(1)(x) · ψ(2)(x).
Moreover, for any v ∈ P , there exists a unique h ∈ G s.t. v = ψ(1)(x) · h. It follows that

f(v) = f(ψ(1)(x) · h) = f(ψ(1)(x)) · h
= ψ(1)(x) · ψ(2)(x) · h = v · h−1 · ψ(2)(x) · h ,

and in particular f(ψ(1)) = ψ(1)·ψ(2), from where we see the correspondence G ' Γ (P ×conj G).

A.1.5 Parallel transport

A connection ω on a principal bundle P π→M specifies a unique way of transporting points
over it. It is realized by singling out a unique lift γ̃ : [0, 1] → P from a curve on the base
γ : [0, 1] → M such that the lift projects to the curve, i.e. π ◦ γ̃ = γ, and the tangent
vectors to γ̃ in TP all lie in the horizontal subspace determined by ω.

One can construct a closed-form expression for the lift [48]. Given a local section
s : U → P , one writes γ̃(t) =

(
(s · g) ◦ γ

)
(t), with g given by

g
(
γ(t)

)
= P exp

{
−
∫

γ

s∗ω

}
, (A.16)

where P denotes the path-ordering operation. This transport then specifies mappings
Γγ : Pγ(0) → Pγ(1) satisfying Γ(ug) = Γ(u)g.

Finally, under a gauge transformation ω → f ∗ω, f ∈ G, one can check that the trans-
port transforms as

g(γ)
f→ f
(
γ(1)

)−1
g(γ)f

(
γ(0)

)
. (A.17)

A.1.6 Associated vector bundles

Given a principal bundle P (M,G)
π→ M , there is a way in which the connection there

defined induces a connection on a related vector bundle. Consider the smooth left action
of G on a k-dimensional vector space V through a representation ρ : G → Aut(V ), and
define another action of G on the product bundle P × V in the following way:

G× (P × V )→ P × V
(g, (u, v)) 7→ (ug, ρ(g)−1v)

(A.18)

The quotient bundle E := (P × V )/G, also denoted P ×ρ V , obtained through the identi-
fication (u, v) ∼ (ug, ρ(g)−1v), together with the projection map πE(u, v) = π(u), is then
called an associated vector bundle to the principal bundle.

An important result [50] regarding associated bundles, which we do not show here, is
that there exists an isomorphism I : Γ(ΛkT ∗M⊗E)→ Γρ(P ⊗V ) between E-valued forms
in M and V -valued forms in P that are equivariant with respect to ρ as in equation (A.6),
i.e. tensor forms in P of the type ρ.
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A very important feature of associated vector bundles to principal bundles is that a
connection on the principal bundle fully determines a connection on the associated bundle.
In fact [51], given a local section s : U ⊂M → P , and a local section v : U ⊂M → V , the
induced connection on E acts locally on e = [s, v] as

∇Xe = [s, dv(X) + ρ∗(A(X))v] (A.19)

where A is the local connection A = s∗ω induced by the connection 1-form ω of P . In
particular, the connection acts on a frame eI = [s, êI ] as

∇eI = [s, ρ∗(A)JI êJ ] , (A.20)

where êI is an element of the canonical basis of V . By a small abuse of notation, this may
also be written as ∇eI = eJ ⊗ ρ∗(A)JI .

Another way to get to this expression for the induced connection is to consider first
the induced exterior covariant derivative. As was discussed in the previous subsection,
there exists an isomorphism I between tensorial forms in P of type ρ and E-valued forms
on the base manifold. Having defined the exterior covariant derivative in P , acting on
tensorial forms of type ρ as in (A.7), we can define an exterior covariant derivative for
E-valued forms α in M simply by taking Dα = I−1(DI(α)). Doing so, we get [49] a map
D : Ωk(M,E)→ Ωk+1(M,E) acting on α⊗ eI as

D(eI ⊗ α) = eI ⊗ dα + ρ∗(A)JIeJ ∧ α , (A.21)

where α ∈ Ω(M) and eI is a canonical section of E. Note that D reduces to ∇ for 0-forms
in M .

A.2 Frames for Vector Bundles

In this section we describe and discuss some standard results related to frames on vector
bundles, i.e. ordered basis for the fibers of the bundle. The general treatment that follows
will prove useful even when describing the tangent bundle of a smooth manifold, where a
canonical choice of basis is available, which is the setting in which General Relativity is
formulated. Most of this section follows the treatment by Chern in his book [52].

A.2.1 Bundles of Frames

We start by showing how a choice of a frame at every point for a vector bundle gives rise
to a bundle of frames. Given a smooth vector bundle E π→ M of dimension d + 1, there
are homeomorphisms π−1(Ui)→ Ui×Rd+1 associated to each open set Ui in an open cover
{Ui} of M , and hence we may construct an ordered set of d+ 1 linearly independent local
sections {eI} of E. To such a set of sections we call a frame [52] of E over Ui. We can
organize the frames of a vector bundle in the following way: consider the sets

Fr(Ex) :=
{
{eI}I=0,...,d | e is frame of Ex = π−1(x)

}

Fr(E) := t
x∈M

Fr(Ex)
(A.22)
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and a projection map ρ : Fr(E)→M . We endow the set Fr(E) with a topology by taking
the trivializing maps φi given by

φi : ρ−1(Ui)→ Ui ×GL(d+ 1,R)(
x, {e µ

I ∂µ}
)
7→
(
x, e µ

I

)
,

(A.23)

and demanding them to be homeomorphisms. In this way we obtain the so-called frame
bundle Fr(E) associated to E, and a local smooth section of Fr(E) will then be a smooth
choice of frames of E at each point in the neighborhood. Note that the transition functions
are of the form

φiφ
−1
j : (Ui ∩ Uj)×GL→ (Ui ∩ Uj)×GL

(x, e µ
I ) 7→ (x, e µ

I

∂x′ν

∂xµ
) ,

(A.24)

and ∂x′ν
∂xµ

is nonsingular (because x, x′ are charts on the atlas of M), so the structure group
of this bundle is precisely GL(d + 1,R). Trough the trivializing maps one sees that the
fibers are homeomorphic to the structure group, and as such the frame bundle has naturally
the structure of a GL principal bundle.

Given a frame bundle Fr(E), it is frequently useful to consider its dual bundle Fr(E)∗.
This is constructed the usual way, by defining its fibers to be the dual spaces of the fibers
of Fr(E). The sections {θI} of the dual frame bundle are appropriately called coframes,
and they satisfy the duality condition at each point:

θI(eJ) = δIJ . (A.25)

While the GL frame bundle considered above describes any possible choice of frames in
E, often one may be interested in restricting one’s attention to a particular subset of those
frames. This restriction is particularly important in physics, where the so-called inertial
frames play a major role. To describe how other G frame bundles may arise as sub-bundles
of the GL bundle, we focus our attention, as an example, in precisely those inertial frames.
Let M be orientable, and equip the bundle E π→ M with a Lorentzian metric g. Then E
has a natural global volume form vol [10] that can be used to specify the orientation of
bases of fibers in E. Consider the subset of oriented and orthogonal frames at each point
x ∈M relative to the Minkowski metric η,

⊥Fr(E) = {(x, e) ∈ Fr(E)| vol(∧d+1
I eI) > 0 ∧ g(eI , eJ) = ηIJ} , (A.26)

and endow it with the subset topology and a projection map ⊥Fr(E)
ξ→ M , with ξ =

ρ|⊥Fr(E). The trivializing maps can be taken to be the same ones as in A.24 but with the
restricted projection, and in this way ⊥Fr(E) becomes a sub-bundle of Fr(E) as the bundle
of oriented orthogonal frames. Moreover, notice that the transition functions map an
oriented orthogonal frame to another one, and such a mapping is given by definition by an
SO(d, 1) matrix. It follows that the structure group of this bundle is that Lie group, acting
on the fibers as e′ µI 7→ Λ J

I e
µ
J , and ⊥Fr(E) can be identified with an SO(d, 1) principal

bundle. Again, a natural right action by SO(d, 1) on the fibers, free and transitive, arises
as above.
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A.2.2 Frame technology

Most of the geometrical quantities one works with in General Relativity are more often than
not described in terms of their components under the canonical basis for the tangent bundle
coming from the atlas of the base manifold. Having defined frames and their bundles, we
may now show how these objects can be described in terms of them, and this will prove
very useful in problems related to quantum gravity. Most of this section follows Chern’s
excellent book [52].

Consider a set of smooth local sections {eI} over U ⊂M of the vector bundle E π→M ,
such that a general section can be written as s = αIeI for some α ∈ C∞(U). A connection
∇ on E is defined, as usual, as a map

∇ : Γ(E)→ Γ(T ∗M ⊗ E)

s.t. (i) ∇(s1 + s2) = ∇s1 +∇s2

(ii) ∇(αs) = dα⊗ s+ α∇s ,
(A.27)

and ∇Xs = ∇s(X), for some X ∈ Γ(TM). Since the image of the connection is an element
of Γ(E ⊗ T ∗M), we may write locally

∇eI = eJ ⊗ ΓJIµ dxµ := eJ ⊗ AJI (A.28)

such that AJI = ΓJIµ dxµ is a matrix of 1-forms in Ω(U), called the connection matrix.
Note that, in accordance with section A.1.3, the connection on E can be constructed

from a principal connection 1-form ω on the frame bundle Fr(E). The frame bundle
induces a connection on any associated bundle Fr(E) ×ρ V through ∇[s, ê] = [s, ρ∗(A)ê],
where A = s∗ω, ê is the canonical basis of V and s is a section of Fr(E). This connection
can be transported to E through an isomorphism, so that one can think of the connection
matrix as AJI = (ρ∗(A))JI . In the rest of this subsection we will, however, just assume
that a connection on E is directly given.

Clearly, the choice of the forms AJI depends on the particular frame one considers.
Given any other frame e′J = eIΛ

I
J , we find (note that the exterior derivative acts on each

component of Λ, seen as smooth functions over M)

∇e′J = eI ⊗ dΛI
J +∇eIΛI

J

= eI ⊗ dΛI
J + eK ⊗ AKIΛI

J

= e′L(Λ−1)LK ⊗ (dΛK
J + AKIΛ

I
J)

= e′L ⊗
[
(Λ−1)LK dΛK

J + (Λ−1)LKA
K
IΛ

I
J

]
, (A.29)

so that, under a transformation of the frame, the forms transform as A′ = Λ−1 dΛ+Λ−1AΛ,
and we recover the result we obtained for the transformation of the principal connection
A.9. From the exterior derivative of this transformation rule one finds Λ dA′ − dΛ ∧
A′ = dAΛ + A ∧ dΛ, and upon substituting dΛ = ΛA′ + AΛ one gets the useful relation
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(dA′+A′ ∧A′) = Λ(dA+A∧A)Λ−1. This nice transformation property (again, similar to
the one of the principal curvature) warrants the definition of the object

F = dA+ A ∧ A ∈ Γ(Λ2T ∗M ⊗ E ⊗ E∗)
F ′ = Λ−1FΛ ,

(A.30)

to which we call the curvature matrix of the connection.
To understand the choice of nomenclature, consider X, Y ∈ Γ(TU) and s = αIeI a

section of E over U . Define the map

R(X, Y ) : Γ(E)→ Γ(E)

s 7→ eJF
J
I (X, Y )αI ,

(A.31)

and note that

∇Xs = eK
[
dαK(X) + AKI(X)αI

]

= eK
[
X(αK) + AKI(X)αI

]

∇Y∇Xs = eK
[
Y (XαK) + AKI(X)Y (αI) + Y (AKIX)αI

]

+ eLA
L
K(Y )

[
X(αK) + AKI(X)αI

]

= eK
[
Y (XαK) + AKJ(Y )X(αJ) + AKI(X)Y (αI)

+Y (AKIX)αI + AKJ(Y )AJI(X)αI
]

∇X∇Y s−∇Y∇Xs = eK
{

[X, Y ]αK + AKJ(Y )X(αJ) + AKI(X)Y (αI)

+
(
AKJ(X)AJI(Y )− AKJ(Y )AJI(X)

)
αI
}

= eK
{

[X, Y ]αK +
(
AKI([X, Y ]) + dAKI(X, Y )

)
αI

+
(
AKJ ∧ AJI(X, Y )

)
αI
}

= eK
{

[X, Y ]αK + AKI([X, Y ])αI + FK
I (X, Y )αI

}

= ∇[X,Y ]s+ eKF
K
I (X, Y )αI .

We see that R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ], so R(X, Y ) is indeed the Riemman
curvature tensor, and one has the relation

R(X, Y )eI = eJF (X, Y )JI . (A.32)

In components, the tensor Rα
βµν = dxα[R(∂µ, ∂ν)∂β] can be related to the curvature matrix

as

Rα
βµνe

I
αe

β
J = θI [R(∂µ, ∂ν)eJ ]

= θIF (∂µ, ∂ν)
K
JeK

= F (∂µ, ∂ν)
I
J ,
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so that one may use the matrices e µ
I to exchange internal indices and chart indices,

Rα
βµνe

I
αe

Jβ = F IJ
µν , (A.33)

and the Ricci scalar R = gβνδ µ
α Rα

βµν is simply

R = F IJ
µν e

µ
I e

ν
J . (A.34)

Another useful geometric quantity one frequently need is the torsion form, which we define
as a map T : Γ(TU ⊗ TU)→ Γ(E) with T = T IeI and

T I := dθI + AIJ ∧ θJ . (A.35)

Again, this object is indeed just the usual torsion, since, for X, Y ∈ Γ(TU),

T I(X, Y )eI =
(
dθI + AIJ ∧ θJ

)
(X, Y )eI

=
[
X(θI(Y ))− Y (θI)(X)− θI ([X, Y ]) + AIJ(X)θJ(Y ) + AIJ(Y )θJ(X)

]
eI

= −[X, Y ] +∇X(θI(Y )eI)−∇Y (θI(X)eI)

= ∇XY −∇YX − [X, Y ] .

With equation (A.21), the torsion form can simply be written as T I = DθI .
To finish this section, we turn our attention to a very useful construction on smooth N -

dimensional (semi-)Riemannian manifolds (M, g), called the Hodge star operator, mapping
n-forms to N − n forms, and defined by the relation α ∧ ?β = 〈α, β〉 vol, α, β ∈ Ωn(M).
Explicitly,

? : Ωn(M)→ Ω(N−n)(M)

?(dxµ1 ∧ ... dxµn) =

√
|g|

(N − n)!
εµ1...µnµn+1...µN

dxµn+1 ∧ ... dxµN .
(A.36)

Since the frames are defined relative to the canonical basis in Ω(M), one can write the
action of the Hodge star on a wedge product of coframes by referring to the above definition,
and a nice closed-form expression is found as:

? (θI1 ∧ ... ∧ θIn) = eI1α1
...eInαn

√
| det g|

(N − n)!
εα1...αn

αn+1...αN
dxαn+1 ∧ ... ∧ dxαN

= eI1α1
...eInαn

det θ

(N − n)!
εα1...αn

β1...βN−ne
A1
αn+1

e β1
A1

...eAN−nαN e
βN−n

AN−n dxαn+1 ∧ ... ∧ dxαN

= eI1α1
...eInαn

det θ

(N − n)!
εα1...αn

β1...βN−ne
β1

A1
...e

βN−n
AN−n θA1 ∧ ... ∧ θAN−n

=
1

(N − n)!
εI1...InA1...AN−n θ

A1 ∧ ... ∧ θAN−n , (A.37)

where det θ = 1
N !
εI1...IN ε

µ1...µN eI1µ1 ...e
IN
µN

was used. From this it also follows that

εI1...IN = det θ εµ1...µN e
µ1

I1
...e µN

IN
. (A.38)



Appendix B

Elements of Representation Theory on
Compact Groups

One of the interesting features of the theories discussed in this work is that the geo-
metrical character of classical gravity seems to reduce to combinatorial structures with
group-theoretical data. In order to understand these structures, we collect here a couple
of important results, based mostly on the very useful review presented in [53], focusing on
the case of compact groups.

B.1 Basic terminology

We will mostly deal with unitary representations of groups. A unitary representation of G
is a homomorphism

ρ : G→ U(H)

g 7→ ρ(g) ,
(B.1)

where U(H) denotes the group of unitary operators on the Hilbert space H. Moreover,
H is called the support of ρ, and its dimension corresponds to the dimension of the rep-
resentation. If H is of dimension d < ∞ then it is naturally isomorphic to Cd, and U(H)
becomes the group of unitary matrices of order d.

Given two representations ρ, ρ′ supported on Hρ,Hρ′ respectively, an intertwiner be-
tween them is a linear map

ι : Hρ → Hρ′

s.t. ι(ρ(g)v) = ρ′(g)ι(v), ∀v, g ∈ Hρ, G .
(B.2)

In other words, the intertwiner satisfies ι ◦ ρ = ρ′ ◦ ι. Such maps are also called in the
literature G-linear or G-morphisms. Note that, when the map is an automorphism, the
intertwiner expresses a notion of invariance; it satisfies ι(ρ(g)v) = ρ(g)ι(v). Furthermore,
if there exist an intertwiner between two representations that is also an isomorphism, then
the representations are deemed equivalent. A representation ρ on Hρ is called irreducible
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if there are no subspaces of Hρ under the action of ρ. Otherwise it is called, appropriately,
reducible.

Given a unitary representation of finite dimension, we may define two useful functions
on G. The matrix elements of ρ are, as usual, given by the map

ρij : G→ C
g 7→ 〈ei|ρ(g)ej〉 ,

(B.3)

where 〈·|·〉 denotes the euclidian inner product and ei is an element of the canonical basis
of the support of ρ. Moreover, the character χρ of the representation ρ is given by the
trace of the matrix associated to ρ,

χρ : G→ C

g 7→
∑

i

ρii(g) (B.4)

Finally, a complex-valued function f which is invariant under conjugation, i.e. f(hgh−1) =
f(g), is called a class function. Since the trace of a matrix is invariant under cyclic
permutations of its arguments, it follows that the character is a class function.

B.2 The Haar measure and harmonic analysis

On every locally compact group G there exists a natural choice of measure, the Haar
measure dg, which is either invariant under left translations or right translations (its con-
structed will not be discussed here, where we have in mind only its applications). For
compact groups in particular, the Haar measure can be shown to be bi-invariant. The
(normalized) Haar integral is then the linear functional

I : Cc(G)→ C

I(f) =

∫

G

dg f(g) ,
(B.5)

satisfying
∫
G

dg = 1. With it one can define the space L2(G) of square-integrable functions
on G, with inner product1

〈f |g〉 =

∫

G

dg f ∗(g)h(g) . (B.6)

Having a bi-invariant measure on compact groups allows us to construct a theory of
harmonical analysis on them, which turns out to be an immensely powerful tool. To see
how this is done, we first need to discuss Schur’s orthogonality relations :

1we use throughout the notation ·∗ to denote complex-conjugation. Please take care that frequently
in the literature one uses ρ∗(g) = ρ(g−1)T to denote the dual representation, although here we mean only
complex conjugation. In any case, for unitary representations the conjugate and the dual coincide.
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Theorem B.2.1 (Schur’s orthogonality relations). Given two unitary irreducible repre-
sentations ρ, ρ′ of a compact group G, their matrix elements satisfy

〈ρij|ρ′kl〉 =

{
1

dim(ρ)
δikδjl if ρ ∼ ρ′

0 otherwise
(B.7)

As a an immediate corolary, their characters satisfy the orthogonality relations

〈χρ|χρ′〉 =

{
1 if ρ ∼ ρ′

0 otherwise .
(B.8)

Another extremely useful tool that we will need is the Peter-Weyl theorem. Here we
collect a couple of important facts:

Theorem B.2.2 (F.Peter-H.Weyl). Let G be a compact group. Then it holds that:

• an orthonormal basis for the space L2(G) is given by the set
{√

dim(ρλ) ρλij |λ ∈ Λ
}
, (B.9)

where Λ denotes the set of equivalence classes of unitary irreducible representations
of G, and each class is labeled by λ.

• the set
{
χρλ |λ ∈ Λ

}
is an orthonormal basis of the class functions in L2(G).

• the dimension of ρ equals the image of e under χρ.

• a finite dimensional unitary representation ρ of G is irreducible iff 〈χρ|χρ〉 = 1.

• two unitary irreducible representations are equivalent iff their characters coincide.

Now we are ready for the harmonic expansion. Let G be again a compact group and
f ∈ L2(G). Then f may be expanded as

f =
∑

λ∈Λ

dim(ρλ)
∑

ij

f̂λijρ
λ
ij (B.10)

where f̂λij are the Fourier harmonics with respect to the Peter-Weyl basis, i.e.

f̂λij = 〈ρλij|f〉 =

∫

G

dg f(g)ρλij(g)∗ . (B.11)

In the special case of class functions, it is easy to show that the expansion reduces to

f =
∑

λ∈Λ

f̂λχρλ (B.12)

where f̂λ = 〈χρλ|f〉. Finally, an analagous version of the Parseval identity also holds in
this case, and it is given by the equality

||f ||2 =

∫

G

dg |f(g)|2 =
∑

λ∈Λ

∑

ij

|f̂λij|2 (B.13)
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B.2.1 The bi-regular representation on L2(G)

The theorem (B.2.2) referenced in the previous subsection states that the matrix elements
of the irreducible unitary representations of G span the space os square-integrable functions
L2(G). Here we rewrite this statement in a manner that will be useful to define the states
of the theories discussed in our context.

First, note that for each λ ∈ Λ one may consider the Hilbert spaces Vλi , i = 1, ..., dim(ρλ)
spanned by the rows of the matrices associated to λ, i.e.

Vλi = spanj{ρλij} . (B.14)

It is clear from the defining property of representations ρ(gh) = ρ(g)ρ(h) that these sub-
spaces are invariant under the right-regular unitary representation R acting on L2(G) via

R(h)f(g) = f(gh), f ∈ L2(G)

R(h)
∑

j

cjρ
λ
(i)j(g) =

∑

j

cjρ
λ
(i)j(gh) =

∑

j,k

cjρ
λ
(i)k(g)ρλkj(h)

R(h) : Vλi → Vλi
v 7→ ρλ(h)v .

(B.15)

It follows that the representation

R⊗R∗ : G×G→ U(Vλi ⊗ (Vλi )∗)

(g1, g2) 7→ ρλ(g1)⊗ ρ∗λ(g2)
(B.16)

is an irreducible representation on Vλi ⊗(Vλi )∗. Since, from the Peter-Weyl theorem, we know
that L2(G) is spanned by the matrix elements of the unitary irreducible representations ρλij,
and using the fact that finite vector spaces of the same dimension are naturally isomorphic,
we may decompose L2(G) as

⊕

λ∈Λ

Vλ ⊗ (Vλ)∗ → L2(G)

(v, α) 7→ f(·) = α(ρ(·)v)

(B.17)

where Vλ is the space spanned by any of the rows of ρλ. The representation R ⊗ R∗ acts
on this space by

f(g) = α(ρ(g)v) 7→ ρ∗λ(g2)α(ρ(g)ρ(g1)v) = f(g−1
2 gg1) , (B.18)

so the representation we have constructed is equivalent to the bi-regular representation
τ(g1, g2)f(g) = f(g−1

2 gg1).
To summarize, our result is that the bi-regular representation τ on L2(G) can be de-

composed in irreducible representations as

L2(G) '
⊕

λ∈Λ

Vλ ⊗ (Vλ)∗

τ '
⊕

λ∈Λ

ρλ ⊗ ρ∗λ .
(B.19)
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B.3 Intertwiners and invariant elements

The intertwining linear maps discussed above play an important role in the description
of the space of invariant elements of the support of a representation. First, consider the
following object

π : H → Invρ(H)

v 7→
(∫

G

dg ρ(g)

)
v

(B.20)

where Invρ(H) = {v ∈ H | ρ(g)v = v, ∀g ∈ G} denotes the set of invariant elements of ρ.
Clearly the image of π is in Invρ(H) because the measure is bi-invariant; indeed, we have
ρ(h)

(∫
G

dg ρ(g)
)
v =

(∫
G

dg ρ(hg)
)
v =

(∫
G

dg ρ(g)
)
v. Moreover, the map π is a projector,

since for the exact same reason it holds that π2 = π.
Our goal now is to establish a correspondence between the space of intertwiners and

the space of invariant elements. To this end, consider two unitary representations ρ, ρ′
supported in Hρ,Hρ′ , respectively. We can construct a unitary representation supported
in Hom(Hρ,Hρ′) as

θ : G×G→ U(Hom(Hρ,Hρ′))

(g1, g2) 7→ ρ′(g1) ◦ · ◦ ρ(g−1
2 ) ,

(B.21)

so that A ∈ Hom(Hρ,Hρ′) is mapped to ρ′(g1) ◦ A ◦ ρ(g−1
2 ). In other words, θ is given by

the action of ρ′(g1)ρ∗(g2). Now we have the following theorem.

Theorem B.3.1. There is a correspondence

Invθ(Hom(Hρ,Hρ′)) ' Int(Hρ,Hρ′) , (B.22)

where Int(Hρ,Hρ′) denotes the space spanned by the intertwiners Hρ → Hρ′ .

Proof:
Consider the space H = Hρ ⊗H∗ρ′ . We have a linear bijection

Int(H,C)→ H
ι 7→ |ι〉 s.t. ι(v) = 〈v|ι〉 , (B.23)

and clearly Int(H,C) ' Int(Hρ,Hρ′). From the definition of intertwiner ι(θ(g1, g2)v) =
ι(v), so it follows that ι(θ(g1, g2)v) = 〈θ†(g1, g2)v|ι〉 = 〈v|θ(g1, g2)ι〉 = 〈v|ι〉 ,∀v ∈ H, so
indeed θ(g) |ι〉 = |ι〉. Intertwiners are thus identified with invariant elements. The converse
identification is analogous. �

As an immediate corollary, from the natural correspondence Hom(Hρ,Hρ′) ' Hρ⊗H∗ρ′ ,
we have the important result

Invθ(Hρ ⊗H∗ρ′) ' Int(Hρ,Hρ′) . (B.24)
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Diagrammatics of Invariants

Around 1971 Roger Penrose proposed a diagrammatic notation for tensor operators [54].
Some years later this notation was flushed out and used extensively for computations and
proofs in the context of group and representation theory. This notation turns out to be
very useful for our purposes, so we review it here, following mainly [55].

C.1 Basic notation

We will be interested in finite-dimensional complex vector spaces and their duals, denoted
V and V ∗, respectively. A tensor is given by the matrix elements xa1...amb1...bn

of some x ∈
V m ⊗ V ∗n, such that the upper indices are associated to V and the lower ones to V ∗.

Now, suppose that the vector space V under consideration is the support of some
unitary representation (ρ, V ) of a group G. According to the discussion in Section B.3, one
may consider the set of invariant elements of V , i.e.

Invρ(V ) = {v ∈ V | ρ(g)v = v, ∀g ∈ G} , (C.1)

and for some tensor xa1...amb1...bn
one can write in index notation

xc1...cmd1...dn
= ρ(g)c1a1 ...ρ(g)cmamρ

∗(g)b1d1 ...ρ
∗(g)bndn x

a1...am
b1...bn

. (C.2)

In the section mentioned above we showed that one can construct elements of Invρ(V )
using the projector of equation (B.20). In particular, the invariant elements of the product
V m ⊗ V ∗n will be the images of the projector

πVm⊗V ∗n =

∫

G

dg
m⊗

i=1

ρ(g)
n⊗

j=1

ρ∗(g) . (C.3)

We will now construct a diagrammatic language for invariant tensors of some unitary
representation (ρ, V ). An invariant tensor is represented by a labeled vertex and a set
of oriented edges (eventually labeled by the indices of the tensor). The orientation and
ordering of the external edges conforms to the following two rules:
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1. incoming edges are associated to upper indices, while outgoing edges are associated
to lower indices;

2. the ordering of the indices on the tensor induces a labeling of the indices on the edges
in a counter-clockwise direction.

As an example of these rules, the invariant tensor h ∈ V m ⊗ V ∗n would be represented
by the diagram1

h

d

f

e

a

b

c
hacdbef = . (C.4)

Moreover, as one would intuitively expect from the diagrammatic representation, a con-
traction of two tensors is represented by joining the appropriate edges of those two tensors.
Referring to our previous example, the contraction of h with itself would be represented
by

h

d

e

a

b

c
hacdbefh

ifj
mnk = h

k

n

m

i

j

f . (C.5)

Now we consider some basis of the space of invariants Invρ⊗ρ∗(V m ⊗ V ∗n) given by d
linearly independent invariant tensors, where d is the dimension of the space. Such a basis
could be represented by

Invρ⊗ρ∗(V m ⊗ V ∗n) = span

{ }

i=1,...,d

ei... ...
m n , (C.6)

where each invariant tensor has m incoming legs and n outgoing legs. Interestingly, some-
times one may be able to express some of the elements of this basis in terms of products of
lower-rank tensors in the basis of a lower dimensional tensor product of the vector spaces.
One calls a tensor of the space of invariants primitive if such a decomposition is however
not possible.

Primitive tensors will be represented with simple vertices. For example, the Kronecker
delta is always one such primitive invariant tensor, and we represent it as

δji =
j i

, (C.7)

such that higher ordered tensors could be constructed, for example, by drawing two lines
together

δji δ
l
k =

j i

l k

δjkδ
l
i =

j i

l k

. (C.8)

1We would like to acknowledge that most of the diagrams in this work were drawn using the TikZiT
package [56].
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By the way, it follows from the rule of contracting indices by joining lines that a diagram
with no open ends represents a trace, and for the particular case of the delta diagram that
trace corresponds to the dimension of the vector space,

dim(V ) = . (C.9)

With the notion of a primitive in place, we can now rewrite our basis for the space
of invariants. Given all the diagrams of equation (C.6), some of those diagrams will be
primitive and some will be constructed from other primitive diagrams. As an example, for
the case of Invρ⊗ρ∗(V 2 ⊗ V ∗2), this means that any invariant tensor can be expressed as

= A +B +C +D +E +F , (C.10)

with an eventual labeling of each primitive diagram if there is more than one primitive of
the same rank. This summarizes the basic notation.

C.1.1 Clebsch-Gordan coefficients

Suppose that one is given a group G and two unitary representations µ, ν supported on
Vµ, Vν so that their tensor product can be factorized into a direct sum of irreducible unitary
representations, i.e. Vµ⊗Vν '

⊕
λ Vλ. Choose some orthonormal basis of

⊕
λ Vλ arranged

in a unitary matrix C. Consider moreover the projector Pλ = 0⊕ ...⊕ idVλ⊕ ...⊕0 into the
λ-th vector space. The Clebsch-Gordan coefficients (which we will call clebsches following
[55]), are the linear maps

Cµν
λ : Vµ ⊗ Vν → Vλ

v 7→ ?(Pλ ◦ C)v ,
(C.11)

which express the projection of an element of Vµ ⊗ Vν to the space Vλ in terms of the
basis of this space. The notation ?(Pλ ◦C) is meant to represent that one takes the single
[dim(Vµ⊗Vν)×dim(Vλ)] non-zero sub-matrix of Pλ ◦C. There is also a conjugate mapping

Cλ
µν : Vλ → Vµ ⊗ Vν
u 7→ ?(C† ◦ Pλ)u ,

(C.12)

such that Cλ
µν =

(
Cµν
λ

)†. Notice that, directly from the definition of the clebsches, we have
the identities

Cλ ◦ Cλ = Pλ

Cρ ◦ Cλ = δρλ idVλ∑

λ

Cλ ◦ Cλ = idVµ⊗Vν
, (C.13)

making explicit the construction of the projector and the completeness relation (we omitted
the µν labels). Moreover, each clebsch is, according to its definition, an intertwiner.
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We may now consider the tensor components associated to the clebsches. The clebsch
Cµν
λ : Vµ ⊗ Vν → Vλ canonically induces a map Vµ ⊗ Vν ⊗ V ∗λ → C giving its components.

Therefore, we may also think of this tensor as a bona fide clebsch from the tensor product
Vµ⊗Vν⊗V ∗λ representation to the scalar one, which we represent by Cµνλ∗

0 . These clebsches
are then invariant tensors, and as such they then deserve a diagrammatic expression of their
own:

Cµνλ∗
0 =

1
√
aµνλ

µ

ν

λ

, (C.14)

where we labeled the edges with the representations (rather than indices) and aλµν is a
normalization factor that is required for the the clebsches to be normalized. It is found
using the second line of equation (C.13),

⇒ aλ∗µν =C0
µνλ∗ ◦ Cµνλ∗

0 =
1

aλ∗µν µ

ν
λ
∗

µ

ν
λ
∗

. (C.15)

Moreover, since we can relate Cµνλ∗
0 to the tensor of Cµν

λ , we ought to be able to write this
last clebsch using the same diagram. We can write Cµν

λ =
aλµν
bλµν

, and determine the factor
bλµν through

1

bλµν

µ

ν

λρ !
=

ρ λ ⇒ 1

bλµν

!
= dim(λ)

⇒ bλµν = dim(λ)

µ

ν
λ

µ

ν
λ

(C.16)

Notice that, since the scalar representation has dimension one, we may use the factor bλµν
in full generality to represent any clebsch.

Now we may construct the projectors using the 3-vertex. According to (C.13), the
projector Pλ : Vµ ⊗ Vν → Vλ into the λ-subspace is given by

Pλ =
dim(λ)

µ

ν
λ

µ

ν

λ

ν

µ

, (C.17)

while the projector P0 : Vµ ⊗ Vν ⊗ Vλ → C is represented by

P0 =
1

µ

ν
λ

ν

µ

λ

ν

λ

µ

. (C.18)

In these two equations one can see the usefulness of this pictorial representation: not only
we were able to construct the projectors using different combinatorics of the same 3-vertex
symbol, diagrams are also very suggestive of how the mapping is made.
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Finally, we may represent the projector acting on unitary representations π : Vµ⊗Vν ⊗
Vλ → Invµ⊗ν⊗ρ(Vµ ⊗ Vν ⊗ Vλ) of equation (B.20). It is given by

π =

∫

G

dg µ(g)⊗ ν(g)⊗ λ(g) =
1

n∑

i=1
µ

ν
λ

ν

µ

λ

ν

λ

µ

i , (C.19)

where, by summing over i, we are accommodating for the possibility that the tensor prod-
uct of the representations decomposes into more than one irreducible representation of
dimension zero.

C.1.2 Recouplings

We end this short review with a few identities using in the reduction of diagrams to simpler
ones, also called recoupling.

First, notice that the orthogonality of the clebsches in equation (C.13) can be written
diagrammatically as

=
∑

λ

dλ

µ

ν
λ

µ

ν

λ

ν

µ
µ

ν , (C.20)

and we can use this identity to figure out a relationship between the projectors

µ

ν

λ

σ

ρ

ω

ρµ

ν σ

and . (C.21)

Starting from the diagram on the right, we can substitute twice, on the left and on the
right, the orthogonality relation (C.20), and find

ω

ρµ

ν σ

=
∑

λ

dλ

ρ

λ
σ

µ

ν

ω

ρ

σ

λ

ρ

σ

=
∑

λ,ι

dλ dι

ρ

λ
σ

ρ

σ

λ

ρ

σ

ω

ν

µ

ι

ν

µ

µ

ι
ν . (C.22)

We can reduce this last diagram to a contraction of two clebsches times a factor, which we
can find by fully contracting the diagram

λ

ρ

σ

ω
ι

ν

µ

= k
ι λ ⇒

λ

ρ

σ

ω

ν

µ

= k
λ

διλ

⇒ k =
1

dλ

µ
ω

ν
σ

λ

ρ

διλ (C.23)
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so our final formula for the recoupling is

ω

ρµ

ν σ

=
∑

λ

dλ

ρ

λ
σ

µ

λ
ν

µ
ω

ν
σ

λ

ρ

λ

ν

µ ρ

σ . (C.24)

The usefulness of this recoupling formula is that it allows us to reduce any diagram with
loops to a tree diagram, by substituting an edge with two vertices with a vertex with two
edges. As an example, the equation below shows the reduction of a loop with five vertices
to a loop with four

=
∑

λ

dλ λ =
∑

λ

dλ
λ

.

(C.25)
In this way, any closed diagram can be re-summed into a series of teta and tetrahedra bubble
graphs, so knowing these particular numbers for some group representation is enough to
compute any trace of a product of invariants. In physic one frequently used the Wigner
3j and 6j symbols for this purpose. They are related to our bubble diagrams through

{
λ µ ν
ω σ ρ

}
= √

µ

ν
λ

ω

σ

ρ

ν
σ

λ ρ

ω

µ

λ

µ

ν
ρ σ

ω

(
λ µ ν
a b c

)
=

1
√

µ

ν

λ

µ

ν
λ

. (C.26)

Note that on the 3j symbol the Latin letters denote components, while the Greek ones
denote the representation.



Appendix D

Identities in SL(2,C)

This chapter is supposed to be a very superficial overview of important results from the
representation theory of the double covering of the Lorentz group. The perspective is simply
one of collecting tools, without any detail on their proper construction. The content of
this chapter was collected in its entirety from [57, 58].

D.1 Representations of L2(SL(2,C))

D.1.1 The space of homogeneous functions

We start by considering the space D(n1,n2) of all homogeneous functions of degree (n1 −
1, n2 − 1) ∈ C2 that are smooth in the punctured space C2∗. We denote χ = (n1, n2) for
simplicity. Homogeneity requires for f ∈ Dχ that

f(eiθx, eiθy) = eiθ(n1−n2)f(x, y) , (D.1)

so in order for the functions to be well defined we must demand n1− n2 ∈ Z. There exists
a suitable topology in which Dχ becomes a topological space. An action of SL(2,C) on
Dχ can now be written as

ρχ(g)f(x, y) = f(gT (x, y)) , (D.2)

where we think of the argument of f as an horizontal complex vector. It turns out that
this action constitutes a continuous representation of SL(2,C) on Dχ.

An alternative realization of D(n1,n2) can be given in terms of functions on the complex
3-sphere S3 ⊂ C2. Indeed, for any point (ω1, ω2) on the sphere and any another point
(rω1, rω2), r ∈ R∗ in C2∗ we find

f(rω1, rω2) = rn1+n2−2f(ω1, ω2) , (D.3)

so to each element of Dχ there corresponds a smooth function on the sphere. Conversely,
to every smooth function on the sphere satisfying f(eiθx, eiθy) = eiθ(n1−n2)f(x, y), called
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the covariance property, there corresponds an element of Dχ. Notice further that there
exists a diffeomorphism

d : SU(2)→ S3 ∈ C2

u 7→ (u21, u22) ,
(D.4)

so a very useful realization of Dχ is given by the SU(2) functions φ = f ◦ d satisfying the
covariance condition

φ(γu) = eiθ(n1−n2)φ(u) , γ =

(
eiθ 0
0 e−iθ

)
. (D.5)

D.1.2 Unitarity of representations

It turns out that there are only two cases in which one can associate an hermitian positive-
definite functional 〈·|·〉 to Dχ that satisfies the invariance property

〈ρχψ|ρχφ〉 = 〈ψ|φ〉 . (D.6)

The relevant cases are

1. When n1 = 1
2
(n + ip) and n2 = 1

2
(−n + ip), for n ∈ Z, p ∈ R, and the functional is

given by

〈ψ|φ〉 =

∫

SU(2)

du ψ∗(u)φ(u) . (D.7)

These particular representations are said to be in the principal series.

2. When n1 = n2 = p ∈ R \ {0} for −1 < p < 1. These representations are said to be
in the complementary series.

Using these functionals one may construct the norm || · || = 〈·|·〉 and complete Dχ in that
norm, making Dχ into a Hilbert space Hχ. The operators ρχ can be uniquely extended to
that Hilbert space, and in this way the principal and complementary series define unitary
representations of SL(2,C) on Hχ. It furthermore turns out that there is an equivalence
of representations in the principal series for Dχ = D−χ.

D.1.3 The canonical basis

By the Peter-Weyl theorem of subsection B.2.2, we know that the matrices ρλij of the irre-
ducible unitary representations λ ∈ Λ of a compact group G form a complete orthonormal
basis for L2(G). In the case of SU(2) these are the Wigner Dj

m1,m2
matrices, where j is

the usual spin labeling the representation and |m1,2| ≤ j. For the case at hand, one can
show that the covariance condition of functions in Hχ induces a restriction of this basis.
The restricted basis then becomes an orthonormal basis for the space Hχ ⊂ L2(SU(2)) in
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terms of its SU(2) realization, called the canonical basis. Denoting n = n1−n2, it is given
by {

ϕχj,m =
√

2j + 1Dj
n
2
m

∣∣∣∣ j ≥
∣∣∣n
2

∣∣∣ , |m| ≤ j

}
, (D.8)

and consequently we have the decomposition

Hχ =
∞⊕

j=|n
2
|
Hχ
j , (D.9)

with Hχ
j the Hilbert space spanned by the (2j + 1) basis elements. It is also common to

define the Wigner SL(2,C) matrices as

Dχ
j1m1j2m2

(g) = 〈χ; j1,m1| ρχ(g) |χ; j2,m2〉

=

∫

SU(2)

du (ϕ∗)χj1,m1
(u)ρχ(g)ϕχj2,m2

(u) (D.10)

and denote the elements of Hχ with the braket notation |χ; j,m〉.

D.2 Harmonic analysis

D.2.1 Fourier transform on L2(SL(2,C))

We would like an analog of the usual Fourier transform on the square integrable functions
on the group, defined with respect to the Haar measure. Although SL(2,C) is not compact,
it is locally compact and unimodular, so it has a bi-invariant measure.

Now, in the same way that the factor eiλx that appears in the usual Fourier transform
is the solution to the equation f(x + y) = f(x)f(y), we will use the above representa-
tions on Dχ for the analog coefficient for functions on L2(SL(2,C)), since they satisfy the
representation property ρχ(gh) = ρχ(g)ρχ(h). We then define the Fourier transform of
f ∈ L2(SL(2,C)) to be

f̂(χ) =

∫

SL(2,C)

dg f(g)ρχ(g) . (D.11)

It turns out, however, that this integral is only well-defined for the representations with
n2 = −n∗1. In this case we may reparametrize

n1 =
1

2
(n+ ip) n2 =

1

2
(−n+ ip) , (D.12)

with n ∈ Z and ρ ∈ R, and we may equivalently label the representations with χ = (n, p).
These are precisely the representations of the principal series mentioned above. The Fourier
transform is then an operator on Hχ acting as

f̂(χ)φ(u) =

∫

SL(2,C)

dg f(g)ρχ(g)φ(u) . (D.13)
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It is possible to show that the action of this operator on the SU(2) functions φ can be
written in terms of an integral kernel K(u, v;χ) as

f̂(χ)φ(u) =

∫

SU(2)

dv K(u, v;χ)φ(v) . (D.14)

An explicit formula for the kernel exists, and can be found in [57]. The kernel K turns out
to be smooth in its arguments u, v, and entire analytic in p. Furthermore, if K(u, v;χ) is
the kernel of f(g), it satisfies the relations:

1. f(gh) has kernel ρ−χ(h)K(u, v;χ),

2. f(h−1g) has kernel ρχ(h)K(u, v;χ),

3. f(g−1) has kernel K(u, v;−χ), −χ = (−n1,−n2),

4. f ∗(g) has kernel K(u, v;χ∗),

5. f ∗(g−1) has kernel K(u, v;−χ∗).
Finally, we also need also define an appropriate trace for the operators f̂(χ). This is given
by the integral

Tr[f̂(χ)] =

∫

SU(2)

du K(u, u, χ) , (D.15)

which can be shown to be well-defined for all f ∈ L2(SL(2,C)). This integral is called a
trace because it agrees with the expectation that it should be a sum over matrix elements:

Tr[f̂(χ)] =
∑

j,m

〈χ; j,m| f̂(χ) |χ; j,m〉

=
∑

j,m

∫

SU(2)

du dv (ϕ∗)χj,m(u)K(u, v;χ)ϕχj,m(v)

=

∫

SU(2)

du dv K(u, v;χ)δ(u− v)

=

∫

SU(2)

du K(u, u;χ) ,

where we used the orthogonality relation of the canonical basis. The trace can furthermore
be written in terms of the Wigner matrices of equation (D.10) as

Tr[f̂(χ)] =
∑

j,m

〈χ; j,m| f̂(χ) |χ; j,m〉

=
∑

j,m

〈χ; j,m|
∫

SL(2,C)

dg f(g)ρχ(g) |χ; j,m〉

=
∑

j,m

∫

SL(2,C)

dg f(g)Dχ
jmjm(g) .
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D.2.2 Plancherel Theorem

It turns out that the Fourier transformation of equation (D.11) has an inverse, given by
the formula

f(g) =
1

2

∫
dχ (n2 + p2)Tr[ρ−χ(g)f̂(χ)]

=
1

2

∑

n

∫ ∞

−∞
dp (n2 + p2)

∫

SU(2)

du ρ−χ(g)K(u, u;χ) ,

where by dχ we mean a sum over every integer n and an integral over every real p. The
trace in this last formula can be rewritten in terms of the Wigner matrices by using the
right invariance of the measure. Note, from the properties of the kernel, that if K(u, v;χ)
is the kernel of f(h), then ρ−χ(g)K(u, v;χ) is the kernel of f(hg). Hence,

Tr[ρ−χ(g)f̂(χ)] =
∑

j,m

∫

SL(2,C)

dh f(hg)Dχ
j,m,j,m(h)

=
∑

j,m

∑

l,q

(D∗)χjmlq(g)

∫

SL(2,C)

dh f(h)Dχ
jmlq(h) ,

and the inverse transformation becomes

f(g) =
1

2

∑

j,m,l,q

∫
dχ (n2 + p2)

∫

SL(2,C)

dh (D∗)χjmlq(g)f(h)Dχ
jmlq(h) . (D.16)

One can moreover show that an analogue of Parseval’s identity holds,

〈f1|f2〉 = 〈K1|K2〉 , (D.17)

where K1, K2 are the integral kernels of f1, f2, respectively. This result establishes a corre-
spondence between integration over functions in SL(2,C) and integration over kernels in
SU(2).

D.2.3 Decomposition of the regular representation

As we did in Appendix B for the case of compact groups, we consider now the right regular
representation on the square integrable functions, defined as

R : SL(2,C)→ U
[
L2(SL(2,C))

]

h 7→
(
Rh : f(g) 7→ f(gh)

)
,

(D.18)

which is unitary because of the bi-invariance of the Haar measure. The expression found
above for the Fourier transformation gives rise to a decomposition of the regular represen-
tation in terms of a direct integral of Hilbert spaces (as opposed to the discrete direct sum
case). It is not necessary to understand the construction of the direct integral of Hilbert
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spaces; it suffices to have the concept of a continuous labeling of Hilbert spaces H(x), and
denote the full Hilbert space by

∫
⊕ dµ H(x), with µ a measure on the space of continuous

labels x. Consider then the decomposition of Hχ into invariant subspaces as in equation
(D.9). We construct the Hilbert space of kernels using the principal series

∫

⊕
dχ

∞⊕

j=|n
2
|
Hχ
j ' L2(SL(2,C)) , (D.19)

which must be isomorphic to L2(SL(2,C)) through the Plancherel theorem. A right trans-
lation f(g) 7→ f(gh) induces a transformation on the kernel asK(u, v;χ) 7→ ρ−χ(h)K(u, v;χ),
implying that this is indeed a decomposition into irreducible unitary representations.
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